Skip to main content
Log in

Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The interaction of a weak shock wave with a heavy elliptic gas cylinder is investigated by solving the Eulerian equations in two-dimensional Cartesian coordinates. An interface-capturing algorithm based on the \(\gamma \)-model and the finite volume weighed essential non-oscillatory scheme is employed to trace the motion of the discontinuous interface. Three gas pairs with different Atwood numbers ranging from 0.21 to 0.91 are considered, including carbon dioxide cylinder in air (air–\(\hbox {CO}_2\)), sulfur hexafluoride cylinder in air (air–\(\hbox {SF}_6\)), and krypton cylinder in helium (He–Kr). For each gas pair, the elliptic cylinder aspect ratio ranging from 1/4 to 4 is defined as the ratio of streamwise axis length to spanwise axis length. Special attention is given to the aspect ratio effects on wave patterns and circulation. With decreasing aspect ratio, the wave patterns in the interaction are summarized as transmitted shock reflection, regular interaction, and transmitted shock splitting. Based on the scaling law model of Samtaney and Zabusky (J Fluid Mech 269:45–78, 1994), a theoretical approach is developed for predicting the circulation at the time when the fastest shock wave reaches the leeward pole of the gas cylinder (i.e., the primary deposited circulation). For both prolate (i.e., the minor axis of the ellipse is along the streamwise direction) and oblate (i.e., the minor axis of the ellipse is along the spanwise direction) cases, the proposed approach is found to estimate the primary deposited circulation favorably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960). https://doi.org/10.1002/cpa.3160130207

    Article  MathSciNet  Google Scholar 

  2. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969). https://doi.org/10.1007/BF01015969

    Article  Google Scholar 

  3. Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011). https://doi.org/10.1146/annurev-fluid-122109-160744

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (1993). https://doi.org/10.2514/3.11696

    Article  Google Scholar 

  5. Arnett, W.D., Bahcall, J.N., Kirshner, R.P., Woosley, S.E.: Supernova 1987a. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989). https://doi.org/10.1146/annurev.aa.27.090189.003213

    Article  Google Scholar 

  6. Lindl, J., Landen, O., Edwards, J., Moses, E., NIC Team: Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501 (2014). https://doi.org/10.1063/1.4865400

  7. Haehn, N., Ranjan, D., Weber, C., Oakley, J., Rothamer, D., Bonazza, R.: Reacting shock bubble interaction. Combust. Flame 159, 1339–1350 (2012). https://doi.org/10.1016/j.combustflame.2011.10.015

    Article  Google Scholar 

  8. Diegelmann, F., Tritschler, V., Hickel, S., Adams, N.: On the pressure dependence of ignition and mixing in two-dimensional reactive shock–bubble interaction. Combust. Flame 163, 414–426 (2016). https://doi.org/10.1016/j.combustflame.2015.10.016

    Article  Google Scholar 

  9. Diegelmann, F., Hickel, S., Adams, N.: Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction. Combust. Flame 174, 85–99 (2016). https://doi.org/10.1016/j.combustflame.2016.09.014

    Article  Google Scholar 

  10. Diegelmann, F., Hickel, S., Adams, N.: Three-dimensional reacting shock–bubble interaction. Combust. Flame 181, 300–314 (2017). https://doi.org/10.1016/j.combustflame.2017.03.026

    Article  Google Scholar 

  11. Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J., Ranjan, D.: Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779–825 (2017). https://doi.org/10.1017/jfm.2017.664

    Article  MathSciNet  Google Scholar 

  12. Bai, X., Deng, X., Jiang, L.: A comparative study of the single-mode Richtmyer–Meshkov instability. Shock Waves (2018). https://doi.org/10.1007/s00193-017-0764-2

  13. Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994). https://doi.org/10.1017/S0022112094001485

    Article  Google Scholar 

  14. Bagabir, A., Drikakis, D.: Mach number effects on shock–bubble interaction. Shock Waves 11, 209–218 (2001). https://doi.org/10.1007/PL00004076

    Article  MATH  Google Scholar 

  15. Shankar, S.K., Kawai, S., Lele, S.K.: Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Phys. Fluids 23, 024102 (2011). https://doi.org/10.1063/1.3553282

    Article  Google Scholar 

  16. Tritschler, V.K., Avdonin, A., Hickel, S., Hu, X.Y., Adams, N.A.: Quantification of initial-data uncertainty on a shock-accelerated gas cylinder. Phys. Fluids 26, 026101 (2014). https://doi.org/10.1063/1.4865756

    Article  Google Scholar 

  17. Luo, X., Wang, M., Si, T., Zhai, Z.: On the interaction of a planar shock with an \(\text{ SF }_6\) polygon. J. Fluid Mech. 773, 366–394 (2015). https://doi.org/10.1017/jfm.2015.257

    Article  Google Scholar 

  18. Zhai, Z., Wang, M., Si, T., Luo, X.: On the interaction of planar shock with a light polygonal interface. J. Fluid Mech. 757, 800–816 (2014). https://doi.org/10.1017/jfm.2014.516

    Article  Google Scholar 

  19. Wang, M., Si, T., Luo, X.: Experimental study on the interaction of the planar shock wave with polygonal helium cylinders. Shock Waves 25, 347–355 (2015). https://doi.org/10.1007/s00193-014-0528-1

    Article  Google Scholar 

  20. Ray, J., Samtaney, R., Zabusky, N.J.: Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids 12, 707–716 (2000). https://doi.org/10.1063/1.870276

    Article  MATH  Google Scholar 

  21. Bai, J., Zou, L., Wang, T., Liu, K., Huang, W., Liu, J., Li, P., Tan, D., Liu, C.: Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Phys. Rev. E 82, 056318 (2010). https://doi.org/10.1103/PhysRevE.82.056318

    Article  Google Scholar 

  22. Zou, L., Liao, S., Liu, C., Wang, Y., Zhai, Z.: Aspect ratio effect on shock-accelerated elliptic gas cylinders. Phys. Fluids 28, 036101 (2016). https://doi.org/10.1063/1.4943127

    Article  Google Scholar 

  23. Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X., Luo, X.: On the interaction of planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289–317 (2017). https://doi.org/10.1017/jfm.2017.528

    Article  MathSciNet  Google Scholar 

  24. Layes, G., Jourdan, G., Houas, L.: Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett. 91, 174502 (2003). https://doi.org/10.1103/PhysRevLett.91.174502

    Article  Google Scholar 

  25. Ranjan, D., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of a strongly shocked gas bubble. Phys. Rev. Lett. 94, 184507 (2005). https://doi.org/10.1103/PhysRevLett.94.184507

    Article  Google Scholar 

  26. Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys. Rev. Lett. 98, 024502 (2007). https://doi.org/10.1103/PhysRevLett.98.024502

    Article  Google Scholar 

  27. Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H., Bonazza, R.: A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85–124 (2008). https://doi.org/10.1017/S0022112007008749

    Article  MATH  Google Scholar 

  28. Georgievskiy, P.Y., Levin, V.A., Sutyrin, O.G.: Interaction of a shock with elliptical gas bubbles. Shock Waves 25, 357–369 (2015). https://doi.org/10.1007/s00193-015-0557-4

    Article  Google Scholar 

  29. Rudinger, G., Somers, L.M.: Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960). https://doi.org/10.1017/S0022112060001419

    Article  MATH  Google Scholar 

  30. Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988). https://doi.org/10.1017/S0022112088000904

    Article  Google Scholar 

  31. Yang, J., Kubota, T., Zukoshi, E.E.: A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994). https://doi.org/10.1017/S0022112094003307

    Article  MATH  Google Scholar 

  32. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996). https://doi.org/10.1006/jcph.1996.0085

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006). https://doi.org/10.1016/j.jcp.2006.04.018

    Article  MathSciNet  MATH  Google Scholar 

  34. Movahed, P., Johnsen, E.: A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability. J. Comput. Phys. 239, 166–186 (2013). https://doi.org/10.1016/j.jcp.2013.01.016

    Article  MathSciNet  Google Scholar 

  35. Beig, S.A., Johnsen, E.: Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing. J. Comput. Phys. 302, 548–566 (2015). https://doi.org/10.1016/j.jcp.2015.09.018

    Article  MathSciNet  MATH  Google Scholar 

  36. Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014). https://doi.org/10.1016/j.jcp.2014.06.003

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, X., Yang, D., Wu, J., Luo, X.: Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27, 064104 (2015). https://doi.org/10.1063/1.4922613

    Article  Google Scholar 

  38. Haselbacher, A.: On impedance in shock-refraction problems. Shock Waves 22, 381–384 (2012). https://doi.org/10.1007/s00193-012-0377-8

    Article  Google Scholar 

  39. Xiang, G., Wang, B.: Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity. J. Fluid Mech. 825, 825–852 (2017). https://doi.org/10.1017/jfm.2017.403

    Article  MathSciNet  Google Scholar 

  40. Hawker, N.A., Ventikos, Y.: Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study. J. Fluid Mech. 701, 59–97 (2012). https://doi.org/10.1017/jfm.2012.132

    Article  MATH  Google Scholar 

  41. Abd-el-fattah, A.M., Henderson, L.F.: Shock waves at a fast-slow gas interface. J. Fluid Mech. 86, 15–32 (1978). https://doi.org/10.1017/S0022112078000981

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Challenge Project (No. TZ2016001) and the National Natural Science Foundation of China (Nos. 11472253, 11602247, 11672277, 11772309, 51676111 and NSAF: U1730104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Additional information

Communicated by R. Bonazza and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zou, L., Zheng, X. et al. Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder. Shock Waves 29, 273–284 (2019). https://doi.org/10.1007/s00193-018-0828-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0828-y

Keywords

Navigation