Skip to main content
Log in

Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Macroscale models of shock–particle interactions require closure terms for unresolved solid–fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers (M) and particle volume fractions (\(\phi )\) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock–particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and \(\phi \). This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock–particle interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kosinski, P.: On shock wave propagation in a branched channel with particles. Shock Waves 15, 13–20 (2006). https://doi.org/10.1007/s00193-005-0001-2

    Article  MATH  Google Scholar 

  2. Kosinski, P.: Numerical analysis of shock wave interaction with a cloud of particles in a channel with bends. Int. J. Heat Fluid Flow 28, 1136–1143 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.11.003

    Article  Google Scholar 

  3. Kosinski, P., Christian Hoffmann, A., Klemens, R.: Dust lifting behind shock waves: comparison of two modelling techniques. Chem. Eng. Sci. 60, 5219–5230 (2005). https://doi.org/10.1016/j.ces.2005.04.035

    Article  Google Scholar 

  4. Ling, Y., Wagner, J.L., Beresh, S.J., Kearney, S.P., Balachandar, S.: Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids 24, 113301 (2012). https://doi.org/10.1063/1.4768815

    Article  Google Scholar 

  5. Parmar, M., Haselbacher, A., Balachandar, S.: Modeling of the unsteady force for shock–particle interaction. Shock Waves 19, 317–329 (2009). https://doi.org/10.1007/s00193-009-0206-x

    Article  MATH  Google Scholar 

  6. van der Hoef, M.A., van Sint Annaland, M., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 47–70 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102130

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, B.H., Yu, A.B.: Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci. 52, 2785–2809 (1997). https://doi.org/10.1016/S0009-2509(97)00081-X

    Article  Google Scholar 

  8. Shuai, W., Tianyu, Z., Guodong, L., Huilin, L., Liyan, S.: Multi-scale heat transfer in fluidized bed reactors by Eulerian CFD modeling. Fuel 139, 646–651 (2015). https://doi.org/10.1016/j.fuel.2014.09.027

    Article  Google Scholar 

  9. Moula, G., Nastoll, W., Simonin, O., Andreux, R.: Multiscale study of reactive dense fluidized bed for FCC regenerator. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 68, 1073–1092 (2013). https://doi.org/10.2516/ogst/2013183

  10. Baek, H., Karniadakis, G.E.: A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass and damping. J. Comput. Phys. 231, 629–652 (2012). https://doi.org/10.1016/j.jcp.2011.09.025

    Article  MathSciNet  MATH  Google Scholar 

  11. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991). https://doi.org/10.1016/0021-9991(91)90007-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Fedosov, D.A., Noguchi, H., Gompper, G.: Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol. 13, 239–258 (2014). https://doi.org/10.1007/s10237-013-0497-9

    Article  Google Scholar 

  13. Hoekstra, A.G., Alowayyed, S., Lorenz, E., Melnikova, N., Mountrakis, L., van Rooij, B., Svitenkov, A., Závodszky, G., Zun, P.: Towards the virtual artery: a multiscale model for vascular physiology at the physics–chemistry–biology interface. Philos. Trans. R. Soc. A 374, 20160146 (2016). https://doi.org/10.1098/rsta.2016.0146

    Article  Google Scholar 

  14. Wu, W., Rodi, W., Wenka, T.: 3D numerical modeling of flow and sediment transport in open channels. J. Hydraul. Eng. 126, 4–15 (2000). https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(4)

    Article  Google Scholar 

  15. Zedler, E.A., Street, R.: Large-eddy simulation of sediment transport: currents over ripples. J. Hydraul. Eng. 127, 444–452 (2001). https://doi.org/10.1061/(ASCE)0733-9429(2001)127:6(444)

    Article  Google Scholar 

  16. Hill, C.S.: Interactions between channel topography and hydrokinetic turbines: sediment transport, turbine performance, and wake characteristics. PhD Thesis, University of Minnesota (2015)

  17. Deen, N.G., Kriebitzsch, S.H.L., van der Hoef, M.A., Kuipers, J.A.M.: Direct numerical simulation of flow and heat transfer in dense fluid–particle systems. Chem. Eng. Sci. 81, 329–344 (2012). https://doi.org/10.1016/j.ces.2012.06.055

    Article  Google Scholar 

  18. Vysokomornaya, O.V., Kuznetsov, G.V., Strizhak, P.A.: Heat and mass transfer in the process of movement of water drops in a high-temperature gas medium. J. Eng. Phys. Thermophys. 86, 62–68 (2013). https://doi.org/10.1007/s10891-013-0805-3

    Article  Google Scholar 

  19. Bergles, A.E., Manglik, R.M.: Current progress and new developments in enhanced heat and mass transfer. J. Enhanc. Heat Transf. (2013). https://doi.org/10.1615/JEnhHeatTransf.2013006989

  20. Chang, J., Wang, G., Gao, J., Zhang, K., Chen, H., Yang, Y.: CFD modeling of particle–particle heat transfer in dense gas–solid fluidized beds of binary mixture. Powder Technol. 217, 50–60 (2012). https://doi.org/10.1016/j.powtec.2011.10.008

    Article  Google Scholar 

  21. Pope, S.B.: Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34, 1–31 (2013). https://doi.org/10.1016/j.proci.2012.09.009

    Article  Google Scholar 

  22. Sierra-Pallares, J., Marchisio, D.L., Parra-Santos, M.T., García-Serna, J., Castro, F., Cocero, M.J.: A computational fluid dynamics study of supercritical antisolvent precipitation: mixing effects on particle size. AIChE J. 58, 385–398 (2012). https://doi.org/10.1002/aic.12594

    Article  Google Scholar 

  23. Wang, Y., Wu, L., Li, B., Zhang, W., Hu, Y.: Numerical simulation and analysis of the mixing process of rotary pressure exchangers with different sizes and structures. J. Chem. Eng. Jpn. 49, 573–578 (2016). https://doi.org/10.1252/jcej.15we140

    Article  Google Scholar 

  24. Mehrabadi, M., Tenneti, S., Garg, R., Subramaniam, S.: Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas–solid flow: fixed particle assemblies and freely evolving suspensions. J. Fluid Mech. 770, 210–246 (2015). https://doi.org/10.1017/jfm.2015.146

    Article  MathSciNet  Google Scholar 

  25. Davis, S., Jacobs, G.B., Sen, O., UdayKumar, H.S.: SPARSE: a subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure. Proc. R. Soc. A. 473, 20160769 (2017). https://doi.org/10.1098/rspa.2016.0769

    Article  MathSciNet  Google Scholar 

  26. Gavrilyuk, S.L., Saurel, R.: Rankine–Hugoniot relations for shocks in heterogeneous mixtures. J. Fluid Mech. 575, 495–507 (2007). https://doi.org/10.1017/S0022112006004496

    Article  MathSciNet  MATH  Google Scholar 

  27. Regele, J.D., Rabinovitch, J., Colonius, T., Blanquart, G.: Unsteady effects in dense, high speed, particle laden flows. Int. J. Multiph. Flow 61, 1–13 (2014). https://doi.org/10.1016/j.ijmultiphaseflow.2013.12.007

    Article  Google Scholar 

  28. Crowe, C.T., Sharma, M.P., Stock, D.E.: The particle-source in cell (PSI-Cell) model for gas-droplet flows. J. Fluids Eng. 6, 325–332 (1977). https://doi.org/10.1115/1.3448756

    Article  Google Scholar 

  29. Shotorban, B., Mashayek, F.: A stochastic model for particle motion in large-eddy simulation. J. Turbul. 7, N18 (2006). https://doi.org/10.1080/14685240600595685

    Article  Google Scholar 

  30. Jacobs, G.B., Don, W.S.: A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks. J. Comput. Phys. 228, 1365–1379 (2009). https://doi.org/10.1016/j.jcp.2008.10.037

    Article  MathSciNet  MATH  Google Scholar 

  31. Jacobs, G.B., Hesthaven, J.S.: High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids. J. Comput. Phys. 214, 96–121 (2006). https://doi.org/10.1016/j.jcp.2005.09.008

    Article  MathSciNet  MATH  Google Scholar 

  32. Davis, S., Dittman, T., Jacobs, G.B., Don, W.S.: High-fidelity Eulerian–Lagrangian methods for simulation of three dimensional, unsteady, high-speed, two-phase flows in high-speed combustors. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2011-5744 (2011). https://doi.org/10.2514/6.2011-5744

  33. Chaudhuri, A., Hadjadj, A., Chinnayya, A.: On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230, 1731–1748 (2011). https://doi.org/10.1016/j.jcp.2010.11.016

    Article  MathSciNet  MATH  Google Scholar 

  34. Haselbacher, A., Parmar, M., Balachandar, S.: Modeling of the unsteady force for shock–particle interaction. Shock Waves 19, 317–329 (2009). https://doi.org/10.1007/s00193-009-0206-x

    Article  MATH  Google Scholar 

  35. Lu, C.: Artificial neural network for behavior learning from meso-scale simulations, application to multi-scale multimaterial flows PhD Thesis, University of Iowa (2010)

  36. Hambli, R.: Apparent damage accumulation in cancellous bone using neural networks. J. Mech. Behav. Biomed. Mater. 4, 868–78 (2011). https://doi.org/10.1016/j.jmbbm.2011.03.002

    Article  Google Scholar 

  37. Hambli, R.: Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. Int. J. Numer. Methods Biomed. Eng. 27, 461–475 (2011). https://doi.org/10.1002/cnm.1413

    Article  MATH  Google Scholar 

  38. Hambli, R., Katerchi, H., Benhamou, C.-L.: Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 10, 133–145 (2011). https://doi.org/10.1007/s10237-010-0222-x

    Article  Google Scholar 

  39. Ghaboussi, J., Pecknold, D.A., Zhang, M.F., Haj-Ali, R.M.: Autoprogressive training of neural network constitutive models. Int. J. Numer. Methods Eng. 42, 105–126 (1998): https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V

  40. Haj-ali, R., Pecknold, D.A., Ghaboussi, J., Voyiadjis, G.Z.: Simulated micromechanical models using artificial neural networks. J. Eng. Mech. 127, 730–738 (2001). https://doi.org/10.1061/(ASCE)0733-9399(2001)127:7(730)

    Article  Google Scholar 

  41. Jung, S., Ghaboussi, J.: Neural network constitutive model for rate-dependent materials. Comput. Struct. 84, 955–963 (2006). https://doi.org/10.1016/j.compstruc.2006.02.015

    Article  Google Scholar 

  42. Sen, O., Gaul, N.J., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Evaluation of Kriging based surrogate models constructed from mesoscale computations of shock interaction with particles. J. Comput. Phys. 336, 235–260 (2017). https://doi.org/10.1016/j.jcp.2017.01.046

    Article  MathSciNet  Google Scholar 

  43. Sen, O., Davis, S., Jacobs, G., Udaykumar, H.S.: Meso-scale simulation of shocked particle laden flows and construction of metamodels. In: APS Shock Compression of Condensed Matter Meeting Abstracts (2015)

  44. Sen, O., Udaykumar, H.S., Jacobs, G.: Effect of microstructural geometry for computing closure models in multiscale modeling of shocked particle laden flow. Bull. Am. Phys. Soc. (2016)

  45. Davis, S., Sen, O., Jacobs, G., Udaykumar, H.S.: Multiscale modeling of particles embedded in high speed flows. In: APS Shock Compression of Condensed Matter Meeting Abstracts (2015)

  46. Davis, S., Sen, O., Jacobs, G., Udaykumar, H.S.: Coupling of micro-scale and macro-scale Eulerian–Lagrangian models for the computation of shocked particle-laden flows. In: ASME 2013 International Mechanical Engineering Congress and Exposition. p. V07AT08A011. American Society of Mechanical Engineers (2013). https://doi.org/10.1115/IMECE2013-62521

  47. Jin, R., Du, X., Chen, W.: The use of metamodeling techniques for optimization under uncertainty. Struct. Multidiscip. Optim. 25, 99–116 (2003). https://doi.org/10.1007/s00158-002-0277-0

    Article  Google Scholar 

  48. Roux, E., Bouchard, P.-O.: Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. J. Mater. Process. Technol. 213, 1038–1047 (2013). https://doi.org/10.1016/j.jmatprotec.2013.01.018

    Article  Google Scholar 

  49. Volpi, S., Diez, M., Gaul, N.J., Song, H., Iemma, U., Choi, K.K., Campana, E.F., Stern, F.: Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification. Struct. Multidiscip. Optim. 51, 347–368 (2015). https://doi.org/10.1007/s00158-014-1128-5

    Article  Google Scholar 

  50. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129, 370–380 (2006). https://doi.org/10.1115/1.2429697

    Article  Google Scholar 

  51. Sen, O., Davis, S., Jacobs, G., Udaykumar, H.S.: Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation. J. Comput. Phys. 294, 585–604 (2015). https://doi.org/10.1016/j.jcp.2015.03.043

    Article  MathSciNet  MATH  Google Scholar 

  52. Song, H., Choi, K.K., Lamb, D.: A study on improving the accuracy of Kriging models by using correlation model/mean structure selection and penalized log-likelihood function. In: 10th World Conference on Structural and Multidisciplinary Optimization, pp. 1–10 (2013)

  53. Zhao, L., Choi, K.K., Lee, I., Carver, R.J., Author, C.: A metamodeling method using dynamic Kriging and sequential sampling. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Multidisciplinary Analysis Optimization Conferences, AIAA Paper 2010-9391 (2010). https://doi.org/10.2514/6.2010-9391

  54. Simpson, T.W., Mauery, T.M., Korte, J.J., Mistree, F.: Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39, 2233–2241 (2001). https://doi.org/10.2514/2.1234

    Article  Google Scholar 

  55. Gaul, N.J., Cowles, H., Choi, K.K., Lamb, D.: Modified Bayesian Kriging for noisy response problems for reliability analysis. Presented at the Proceedings of the ASME 2015 IDETC/CIE, Boston, MA (2015). https://doi.org/10.1115/DETC2015-47370

  56. Gaul, N.: Modified Bayesian Kriging for noisy response problems and Bayesian confidence-based reliability-based design optimization. PhD Thesis, University of Iowa (2014)

  57. Kapahi, A., Sambasivan, S., Udaykumar, H.S.: A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems. J. Comput. Phys. 241, 308–332 (2013). https://doi.org/10.1016/j.jcp.2013.01.007

    Article  MathSciNet  MATH  Google Scholar 

  58. Kapahi, A., Udaykumar, H.S.: Dynamics of void collapse in shocked energetic materials: physics of void–void interactions. Shock Waves 23, 537–558 (2013). https://doi.org/10.1007/s00193-013-0439-6

    Article  Google Scholar 

  59. Kapahi, A., Mousel, J., Sambasivan, S., Udaykumar, H.S.: Parallel, sharp interface Eulerian approach to high-speed multi-material flows. Comput. Fluids 83, 144–156 (2013). https://doi.org/10.1016/j.compfluid.2012.06.024

    Article  MathSciNet  MATH  Google Scholar 

  60. Rai, N.K., Kapahi, A., Udaykumar, H.S.: Treatment of contact separation in Eulerian high-speed multimaterial dynamic simulations. Int. J. Numer. Methods Eng. 100, 793–813 (2014). https://doi.org/10.1002/nme.4760

    Article  MathSciNet  MATH  Google Scholar 

  61. Sambasivan, S.: An Evaluation of Ghost-Fluid Methods for Strong Shock Interations with Immersed Solid Interfaces. University of Iowa, Iowa City (2009)

    Google Scholar 

  62. Sambasivan, S.K., UdayKumar, H.S.S.: Sharp interface simulations with Local Mesh Refinement for multi-material dynamics in strongly shocked flows. Comput. Fluids 39, 1456–1479 (2010). https://doi.org/10.1016/j.compfluid.2010.04.014

    Article  MathSciNet  MATH  Google Scholar 

  63. Sambasivan, S.K., UdayKumar, H.S.: Ghost fluid method for strong shock interactions Part 2: immersed solid boundaries. AIAA J. 47, 2923–2937 (2009). https://doi.org/10.2514/1.43153

    Article  Google Scholar 

  64. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  65. Sethian, J.A.: Level-Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  66. Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175, 200–224 (2002). https://doi.org/10.1006/jcph.2001.6935

    Article  MathSciNet  MATH  Google Scholar 

  67. Das, P., Sen, O., Jacobs, G., Udaykumar, H.S.: A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows. Int. J. Comput. Fluid Dyn. 31, 269–291 (2017). https://doi.org/10.1080/10618562.2017.1351610

    Article  MathSciNet  Google Scholar 

  68. Lophaven, S.N., Søndergaard, J., Nielsen, H.B.: Kriging Toolbox (2002). http://www2.imm.dtu.dk/projects/dace/

  69. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  70. Drikakis, D., Ofengeim, D., Timofeev, E., Voionovich, P.: Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods. J. Fluids Struct. 11, 665–692 (1997). https://doi.org/10.1006/jfls.1997.0101

    Article  Google Scholar 

  71. Takayama, K., Itoh, K.: Unsteady drag over cylinders and aerofoils in transonic shock tube flows. In: Shock Waves and Shock Tubes: Proceedings of the Fifteenth International Symposium on Shock Waves and Shock Tubes, Berkeley, California, July 28–August 2, 1985, p. 479. Stanford University Press, Palo Alto, United States (1986)

  72. Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: High-resolution simulations of cylindrical void collapse in energetic materials: effect of primary and secondary collapse on initiation thresholds. Phys. Rev. Fluids 2, 043202 (2017). https://doi.org/10.1103/PhysRevFluids.2.043202

    Article  Google Scholar 

  73. Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: Collapse of elongated voids in porous energetic materials: effects of void orientation and aspect ratio on initiation. Phys. Rev. Fluids 2, 043201 (2017). https://doi.org/10.1103/PhysRevFluids.2.043201

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the Air Force Office of Scientific Research under Grant Number FA9550-12-1-0115. H.S. Udaykumar also acknowledges support from a Grant from AFRL, Eglin AFB (Program Manager: Martin Schmidt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Udaykumar.

Additional information

Communicated by D. Frost and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, O., Gaul, N.J., Davis, S. et al. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure. Shock Waves 28, 579–597 (2018). https://doi.org/10.1007/s00193-017-0801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0801-1

Keywords

Navigation