Skip to main content
Log in

The multi-modal responses of a physical head model subjected to various blast exposure conditions

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

A Correction to this article was published on 22 December 2017

This article has been updated

Abstract

The local and global biomechanical response of the body to a blast wave is the first step of a sequence that leads to the development of stresses and strains which can exceed the tolerance of brain tissue. These stresses and strains may then lead to neuro-physical changes in the brain and contribute to initiate a cascade of events leading to injury. The specific biomechanical pathways by which the blast energy is transmitted through the head structure are, however, not clearly understood. Multiple transmission mechanisms have been proposed to explain the generation of brain stresses following the impingement of a blast wave on the head. With the use of a physical head model, the work presented here aims at demonstrating that the proposed transmission mechanisms are not mutually exclusive. They are part of a continuum of head responses where, depending on the exposure conditions, a given mechanism may or may not dominate. This article presents the joint analysis of previous blast test results generated with the brain injury protection evaluation device (BIPED) headform under four significantly different exposure conditions. The focus of the analysis is to demonstrate how the nature of the recorded response is highly dependent on the exposure characteristics and consequently, on the method used to reproduce blast exposure in a laboratory environment. The timing and magnitude of the variations in intra-cranial pressures (ICP) were analysed relative to the external pressure field in order to better understand the wave dynamics occurring within the brain structure of the headform. ICP waveforms were also analysed in terms of their energy spectral density to better identify the energy partitioning between the different modes of response. It is shown that the BIPED response is multi-modal and that the energy partitioning between its different modes of response is greatly influenced by exposure characteristics such as external peak overpressure, impulse, blast wave structure, and direction of propagation. Convincing evidence of stresses generated from local skull deformation is presented along with evidence of stress transmission through relative brain-to-skull motion. These findings suggest that research aimed at defining exposure thresholds should not focus on a single stress transmission mechanism or use experimental designs unrepresentative of realistic blast loading conditions that may favour a given mechanism over another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Change history

  • 22 December 2017

    The second author name was published with incorrect spelling. It should read as M. Philippens. The original article was corrected.

References

  1. Courtney, A., Courtney, M.: The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms. Front. Neurol. 6, 221 (2015). doi:10.3389/fneur.2015.00221

    Article  Google Scholar 

  2. Bass, C.R., Panzer, M.B., Rafaels, K.A., Wood, G., Shridharani, J., Capehart, B.: Brain injuries from blast. Ann. Biomed. Eng. 40(1), 185–202 (2012). doi:10.1007/s10439-011-0424-0

  3. Gupta, R.K., Przekwas, A.: Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front. Neurol. 4, 59 (2013). doi:10.3389/fneur.2013.00059

    Article  Google Scholar 

  4. Young, L., Rule, G.T., Bocchieri, R.T., Walilko, T.J., Burns, J.M., Ling, G.: When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain. Front. Neurol. 6, (2015). doi:10.3389/fneur.2015.00089

  5. van Dommelen, J.A.W., Hrapko, M., Peters, G.W.M.: Mechanical properties of brain tissue: characterisation and constitutive modelling. In: Kamkim, A., Kiseleva, I. (eds.) Mechanosensitivity of the Nervous System, pp. 249–279. Springer, New York (2009). doi:10.1007/978-1-4020-8716-5_12

    Chapter  Google Scholar 

  6. Brands, D.W.A., Peters, G.W.M., Bovendeerd, P.H.M., Wismans, J., Paas, M.H.J.W., van Bree, J.L.M.J: Comparison of the dynamic behavior of brain tissue and two model materials. In: SAE technical paper, 99SC21 (1999)

  7. Bolander, R., Mathie, B., Bir, C., Ritzel, D., VandeVord, P.: Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann. Biomed. Eng. 39(10), 2250 (2011). doi:10.1007/s10439-011-0343-0

    Article  Google Scholar 

  8. Moss, W.C., King, M.J., Blackman, E.J.: Skull flexure from blast waves: A mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103(10), 108702 (2009). doi:10.1103/PhysRevLett.103.108702

    Article  Google Scholar 

  9. Bir, C.: Measuring blast-related intracranial pressure within the human head. DTIC report, ADA547306. doi:http://www.dtic.mil/get-tr-doc/pdf?AD=ADA547306 (2011). Accessed 28 Aug 2017

  10. Hua, Y., Akula, P.K., Gu, L., Berg, J., Nelson, C.A.: Experimental and numerical investigation of the mechanism of blast wave transmission through a surrogate head. J. Comput. Nonlinear Dyn. 9(3), 031010 (2014). doi:10.1115/1.4026156

    Article  Google Scholar 

  11. Varas, J.M., Philippens, M., Meijer, S.R., VanBree, J.L.M.J., deVries, D.V.W.M.: Physics of IED blast shock tube simulations for mTBI research. Front. Neurol. 2, 58 (2011). doi:10.3389/fneur.2011.00058

    Google Scholar 

  12. Cooper, G.J.: Protection of the lung from blast overpressure by thoracic stress wave decouplers. J. Trauma Inj. Infect. Crit. Care 40(3s), 105–110 (1996)

  13. Courtney, A.C., Adrusiv, L.P., Courtney, M.W.: A test of the acoustic impedance model of blast wave transmission. J Battlefield Technol. 16(3), 1–4 (2013)

    Google Scholar 

  14. Tikhonravov, A.V., Trubetskov, M.K., Winfree, N.A., Kang, J.H.: Low-frequency approximation of optimal elastic parameters for two-layer blast protection jackets. Num. Meth. Prog. 7, 23–25 (2006)

    Google Scholar 

  15. Leonardi, A., Bir, C., Ritzel, D., Vandervord, P.: Intra-cranial pressure increases during exposure to a shock wave. J. Neurotrauma 28, 85–94 (2011). doi:10.1089/neu.2010.1324

    Article  Google Scholar 

  16. Ono, K., Kikuchi, A., Nakamura, M., Kobayashi, H., Nakamura, N.: Human head tolerance to sagittal impact reliable estimation deduced from experimental head injury using subhuman primates and human cadaver skulls. In: SAE technical paper 801303 (1980). doi:10.4271/801303

  17. Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng 126(2), 226–236 (2004). doi:10.1115/1.1691446

    Article  Google Scholar 

  18. Hutchinson, J., Kaiser, M.K., Lankarani, H.M.: The head injury criterion (HIC) functional. Appl. Math. Comput. 96, 1–16 (1998). doi:10.1016/S0096-3003(97)10106-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Battacharjee, Y.: Shell shock revisited: Solving the puzzle of blast trauma. Science 319, 406–408 (2008). doi:10.1126/science.319.5862.406

    Article  Google Scholar 

  20. Cernak, I., Merkle, A.C., Koliatsos, V.E., Bilik, J.M., Luong, Q.T., Mahota, T.M., Xu, L., Slack, N., Windle, D., Ahmed, F.A.: The pathobiology of blast injuries and blast-induced neuro-trauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 41(2), 538–551 (2011). doi:10.1016/j.nbd.2010.10.025

    Article  Google Scholar 

  21. Courtney, A.C., Courtney, M.W.: A thoracic mechanism of mild traumatic brain injury due to blast pressure waves. Med. Hypotheses 72(1), 76–83 (2009). doi:10.1016/j.mehy.2008.08.015

    Article  MathSciNet  Google Scholar 

  22. Courtney, M., Courtney, A.: History and evidence regarding hydrostatic shock. Neurosurgery 68(2), E596–E598 (2011). doi:10.1227/NEU.0b013e3182041992

    Article  Google Scholar 

  23. Needham, C.E., Ritzel, D., Rule, G.T., Wiri, S., Young, L.: Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front. Neurol. 6, 72 (2015). doi:10.3389/fneur.2015.00072

    Article  Google Scholar 

  24. Moss, W.C., King, M.J., Blackman, E.G.: Distinguishing realistic military blasts from firecrackers in mitigation studies of blast-induced traumatic brain injury. PNAS 108(17), 6691–6692 (2011). doi:10.1073/pnas.1101671108

    Article  Google Scholar 

  25. Josey, T., Sawyer, T.W., Ritzel, D., Donahue, L.: High fidelity simulation of free-field blast loading: the importance of dynamic pressure. In: Proceedings of the Personal Armour Systems Symposium 2016, Amsterdam, Netherlands (2016)

  26. Stemper, B.D., Shah, A.S., Budde, M.D., Olsen, C.M., Glavaski-Joksimovic, A., Kurpad, S.N., McCrea, M., Pintar, F.A.: Behavioral outcomes differ between rotational acceleration and blast mechanisms of mild traumatic brain injury. Front. Neurol. 7, 31 (2016). doi:10.3389/fneur.2016.00031

    Article  Google Scholar 

  27. Sawyer, T.W., Wang, Y., Ritzel, D.V., Josey, T., Villanueva, M., Shei, Y., Nelson, P., Hennes, G., Weiss, T., Vair, C., Fan, C.: High-fidelity simulation of primary blast: direct effects on the head. J. Neurotrauma 33, 1181–1193 (2016). doi:10.1089/neu.2015.3914

  28. Willinger, R., Taleb, L., Kopp, C.M.: Modal and temporal analysis of head mathematical models. J. Neurotrauma 12(4), 743–754 (1995). doi:10.1089/neu.1995.12.743

    Article  Google Scholar 

  29. Viano, D.C.:Biomechanics of head injury—Toward a theory linking head dynamic motion, brain tissue deformation and neural trauma. In: SAE technical paper 881708 (1988). doi:10.4271/881708

  30. Hodgson, V.R., Gurdjian, E.S., Thomas, L.M.: The determination of response characteristics of the head with emphasis on mechanical impedance techniques. In: SAE technical paper 670911 (1967). doi:10.4271/670911

  31. Stalnaker, R.L., Fogle, J.L., McElhaney, J.H.: Driving point impedance characteristics of the head. J. Biomech. 4(2), 127–139 (1971). doi:10.1016/0021-9290(71)90023-6

    Article  Google Scholar 

  32. Willinger, R., Baumgartner, D.: Human head tolerance limits to specific injury mechanisms. Int. J. Crashworthiness 8(6), 605–617 (2003). doi:10.1533/ijcr.2003.0264

    Article  MATH  Google Scholar 

  33. Ouellet, S., Bouamoul, A., Gauvin, R., Binette, J.S., Williams, K.V., Martineau L.: Development of a biofidelic head surrogate for blast-induced traumatic brain injury assessment. In: Proceedings of the Personal Armor System Symposium 2012, Nuremberg, Germany (2012)

  34. Ouellet, S., Bir, C., Bouamoul, A.: Direct comparison of the primary blast response of a physical head model with post-mortem human subjects. In: Proceedings of the Personal Armour System Symposium 2014, Cambridge, UK (2014)

  35. Ganpule, S.: Mechanics of blast loading on PMHS and surrogate heads in the study of traumatic brain injury using experimental and computational approaches. Ph.D. Dissertations, University of Lincoln Nebraska (2013)

  36. Merkle, A.C., Wing, I.D., Armiger, R.A., Carkhuff, B.G., Roberts, J.C.: Development of a human head physical surrogate model for investigating blast injury. In: Proceedings of ASME International Mechanical Engineering Congress (2009). doi:10.1115/IMECE2009-11807

  37. Roberts, J.C., Merkle, A.C., Carkhuff, B.G.,Wing, I.D., Leese, G.B.: Methods and systems to implement a surrogate head model and directly measure brain/skull relative displacement. U.S. Patent 8725449 (2014)

  38. Foster, J.K., Kortge, J.O., Wolanin, M.J.: Hybrid III: A biomechanically-based crach test dummy. In: SAE technical paper 770938, (1977). doi:10.4271/770938

  39. Bir, C., Bolander, R., Leonardi, A., Ritzel, D., VandeVord, P., Dingell, J.D.: A biomechanical prospective of blast injury neuro-trauma. In: Proceedings of HFM-207 NATO Symposium on Survey of Blast Injury Across the Full Landscape of Military Science, MP-HFM-207-27, Halifax, Canada. doi:10.14339/RTO-MP-HFM-207-27-doc

  40. Yoganandan, N., Pintar, F.A., Zhang, J., Baisden, J.L.: Physical properties of the human head: mass, center of gravity and moment of inertia. J. Biomech. 42(9), 1177–1192 (2009). doi:10.1016/j.jbiomech.2009.03.029

    Article  Google Scholar 

  41. Fry, F.J., Barger, J.E.: Acoustical properties of the human skull. J. Acoust. Soc. Am. 63(5), 1576–1590 (1978). doi:10.1121/1.381852

  42. Pichardo, S., Sin, V.W., Hynynen, K.: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Phys. Med. Biol. 56(1), 219 (2011). doi:10.1088/0031-9155/56/1/014

    Article  Google Scholar 

  43. Stenfelta, S., Goode, R.L.: Transmission properties of bone conducted sound: Measurements in cadaver heads. J Acoust. Soc. Am. 118, 2373–2391 (2005). doi:10.1121/1.2005847

    Article  Google Scholar 

  44. Appleby-Thomas, G.J., Hazell, P.J., Sheldon, R.P., Stennett, C., Hameed, A., Wilgeroth, J.M.: The high strain-rate behaviour of selected tissue analogues. J. Mech. Beh. Biomed. Mat 33, 124–135 (2014). doi:10.1016/j.jmbbm.2013.05.018

    Article  Google Scholar 

  45. Brands, D.W., Boveendeerd, P.H., Peters, G.W., Wismans, J.S.: The large strain dynamic behaviour of in-vitro porcine brain tissue and a silicone gel model material. Stapp Car Crash J. 44, 249–260 (2000)

    Google Scholar 

  46. Kremkau, F.W., Barnes, R.W., McGraw, C.P.: Ultrasonic attenuation and propagation speed in normal human brain. J. Acoust. Soc. Am. 70(1), 29–38 (1981). doi:10.1121/1.386578

    Article  Google Scholar 

  47. Glasstone, S., Dolan, P.J.: The effects of nuclear weapons. US Department of Defense, DITC report ADA087568. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA087568 (1977). Accessed 28 Aug 2017

Download references

Acknowledgements

The authors would like to acknowledge the work of Jean-Sebastien Binette, Kevin Williams, Nelson Viel, Pascal Grenier, and Jacques Blais, who were all instrumental to the development of the BIPED headform. The authors would also like to acknowledge the support from the technical staff at the Canadian METC and at the TNO Rijswijk shock tube test facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ouellet.

Additional information

Communicated by S. H. R. Hosseini.

The second author name was published with incorrect spelling. It should read as M. Philippens. Now, it has been corrected.

A correction to this article is available online at https://doi.org/10.1007/s00193-017-0793-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouellet, S., Philippens, M. The multi-modal responses of a physical head model subjected to various blast exposure conditions. Shock Waves 28, 19–36 (2018). https://doi.org/10.1007/s00193-017-0771-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0771-3

Keywords

Navigation