Skip to main content
Log in

Shock wave bifurcation in convergent–divergent channels of rectangular cross section

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This work addresses two- and three-dimensional turbulent flow in simple channels, modeling the air intakes of rectangular cross section. Flow regimes with a supersonic free stream and supersonic velocities at the throat or immediately downstream of the throat are considered. Bifurcations of the shock wave arising ahead of the cowl are studied numerically. Solutions of the Reynolds-averaged Navier–Stokes equations are obtained with a finite-volume solver of second-order accuracy on fine computational meshes. The solutions reveal jumps of the shock leg position with variations of the free-stream Mach number. The dependence of the shock position on the cowl slope and streamwise location of the throat is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sforza, P.M.: Theory of Aerospace Propulsion. Academic Press, Waltham (2012)

    Google Scholar 

  2. Daneshyar, H.: One-Dimensional Compressible Flow: Thermodynamics and Fluid Mechanics Series. Pergamon, Oxford (1976)

    Google Scholar 

  3. Maruyama, D., Kusunose, K., Matsushima, K.: Aerodynamic characteristics of a two-dimensional supersonic biplane, covering its take-off to cruise conditions. Shock Waves 18(6), 437–450 (2009)

    Article  MATH  Google Scholar 

  4. Yamashita, H., Kuratani, N., Yonezawa, M., Ogawa, T., Nagai, H., Asai, K., Obayashi, S.: Wind tunnel testing on start/unstart characteristics of finite supersonic biplane wing. Int. J. Aerosp. Eng. Article ID 231434, 10 (2013)

  5. Zha, G.-Ch., Knight, D., Smith, D., Haas, M.: Numerical simulation of HSCT inlet operability with angle of attack. AIAA Paper 97–2761 (1997)

  6. Zha, G.-Ch., Knight, D., Smith, D.: Numerical investigations of HSCT inlet unstart transient at angle of attack. AIAA Paper 98–3583 (1998)

  7. Oswatitsch, K.: Der Drukruckgewinn bei Geschossen mit Ruckstorsanttrib bei holen Uberschallgeschwindigkeiten. Goettingen Paper (1944). English translation: pressure recovery for missiles with reaction propulsion at high supersonic speeds. NACA TM 1140 (1947). http://link.springer.com/chapter/10.1007/978-3-322-91082-0_18. Accessed 10 Feb 2016

  8. Ferri, A., Nucci, L.M.: The origin of aerodynamic instability of supersonic inlet at subcritical condition. NACA RM L50K30 (1951)

  9. Dailey, C.L.: Supersonic diffuser instability. J. Aeronaut. Sci. 22(11), 733–749 (1955)

    Article  Google Scholar 

  10. Trapier, S., Deck, S., Duveau, P.: Delayed detached-eddy simulation of supersonic inlet buzz. In: 2nd Symposium on Hybrid RANS/LES Methods, Greece, TP 2007-108, pp. 1–16 (2007)

  11. Tanaka, N., Mizukaki, T.: Visualization of unsteady behavior of shock waves around supersonic intake installed in shock tunnel. In: 28th International Congress of the Aeronautical Sciences, pp. 1–7 (2012)

  12. Soltani, M.R., Farahani, M.: Effect of angle of attack on the inlet buzz. J. Propuls. Power 28, 747–757 (2012)

    Article  Google Scholar 

  13. Vivek, P., Mittal, S.: Buzz instability in a mixed-compression air intake. J. Propuls. Power 25, 819–822 (2012)

    Article  Google Scholar 

  14. Nakayama, T., Sato, T., Akatsuka, M., Hashimoto, A., Kojima, T., Taguchi, H.: Investigation on shock oscillation phenomenon in a supersonic air inlet. AIAA Paper 2011–3094 (2011)

  15. Hong, W., Kim, C.: Computational study on hysteretic inlet buzz characteristics under varying mass flow conditions. AIAA J. 52, 1357–1373 (2014)

    Article  Google Scholar 

  16. Chang, J., Wang, L., Bao, W., Qin, J., Niu, J., Xue, W.: Novel oscillatory patterns of hypersonic inlet buzz. J. Propuls. Power 28, 1214–1221 (2012)

    Article  Google Scholar 

  17. Kuzmin, A.: Shock wave instability in a channel with an expansion corner. Int. J. Appl. Mech. 7(2), 1550019-1–1550019-9 (2015)

  18. Kuzmin, A.: Aerodynamic surfaces admitting jumps of the lift coefficient in transonic flight. In: Hafez, M.M., Oshima, K., Kwak, D. (eds.) Computational Fluid Dynamics Review 2010, pp. 543–562. World Scientific Publishing, Singapore (2010)

    Chapter  Google Scholar 

  19. Kuzmin, A.: Non-unique transonic flows over airfoils. Comput. Fluids 63, 1–8 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kuzmin, A.: Instability of the shock wave/sonic line interaction. E-print, Centre pour la Communication Scientifique Directe, Centre National de la Recherche Scientifique, France, pp. 1–11 (2015). https://hal.archives-ouvertes.fr/hal-01136894

  21. Kuzmin, A.: On the lambda-shock formation on ONERA M6 wing. Int. J. Appl. Eng. Res. 9, 7029–7038 (2014)

    Google Scholar 

  22. Menter, F.R.: Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 23, 305–316 (2009)

    Article  MATH  Google Scholar 

  23. Sung, H.-G., Kim, S.-J., Yeom, H.-W., Heo, J.-Y.: On the assessment of compressibility effects of two-equation turbulence models for supersonic transition flow with flow separation. Int. J. Aeronaut. Space Sci. 14, 387–397 (2013)

    Google Scholar 

  24. Filonovich, M.S., Leal, J.B., Rojas-Solórzano, L.R.: Prediction of compound channel secondary flows using anisotropic turbulence models. In: Schleiss, A.J., de Cesare, G., Franca, M.J., Pfister, M. (eds.) River Flow 2014. Taylor & Fransis DGroup, London (2014). ISBN: 978-1-138-02674-2,163-170

  25. Da Silva, B.R.G., Guerra, D.R.S., Silva Freire, A.P.: On the numerical calculation of impinging jets. In: Proceedings of 18th International Congress of Mechanical Engineering (COBEM’05), Ouro Preto (2005). http://www.worldcat.org/title/proceedings-of-the-cobem-2005-18th-international-congress-of-mechanical-engineering/oclc/500376152

Download references

Acknowledgments

This research was performed using computational resources provided by the Computational Center of St. Petersburg State University. The work was supported by the Russian Foundation for Basic Research under Grant No. 13-08-00288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kuzmin.

Additional information

Communicated by F. Lu and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, A. Shock wave bifurcation in convergent–divergent channels of rectangular cross section. Shock Waves 26, 741–747 (2016). https://doi.org/10.1007/s00193-016-0624-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0624-5

Keywords

Navigation