Skip to main content
Log in

SBLI control for wings and inlets

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Flow control can be applied to shock wave/boundary layer interactions to achieve two different goals; the delay of shock-induced separation and/or the reduction of stagnation pressure losses, which cause wave drag or inlet inefficiencies. This paper introduces the principles and main techniques for both approaches and assesses their relative suitability for practical applications. While boundary layer suction is already in wide use for separation control, the most promising novel device is the micro-vortex generator, which can deliver similar benefits to traditional vortex generators at much reduced device drag. Shock control is not yet used on practical applications for a number of reasons, but recent research has focused on three-dimensional devices which promise to deliver flow control with improved offdesign behaviour. Furthermore, there are some indications that a new generation of control devices may be able to combine the benefits of shock and boundary layer control and reduce shock-induced stagnation pressure losses as well as delay shock-induced separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pearcey, H.H.: Shock-induced separation and its prevention by design and boundary layer control. In: Boundary Layer and Flow Control, vol. 2, pp 1166–1344. Pergamon Press, (1961)

  2. Mitchell, G.A., Davis, R.W.: Performance of centerbody vortex generators in an axisymmetric mixed-compression inlet at mach numbers from 2.0 to 3.0, NASA TN D-4675 (1968)

  3. Neumann, H.E., Wasserbauer, J.F., Shaw, R.J.: Performance of vortex generators in a Mach 2.5 low-bleed Full-scale 45-percent-internal-contraction axisymmetric inlet, NASA TM X-3195 (1975)

  4. Reichert B.A. and Wendt B.J. (1996). Improving curved subsonic diffuser performance with vortex generators. AIAA J. 34(1): 65–72

    Article  Google Scholar 

  5. Doerffer, P., Szwaba, R.: Shock wave-boundary layer interaction control by streamwise vortices, In: Proceedings of the 21st International Congress of Theoretical and Applied Mechanics. Springer Warsaw, Poland, (2005)

  6. Szumowski A. and Wojciechowski J. (2005). Use of vortex generators to control internal supersonic flow separation. AIAA J. 43(1): 216–218

    Article  Google Scholar 

  7. Amitay M., Smith D.R., Kibens V., Parekh D.E. and Glezer A. (2001). Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39(3): 361–370

    Article  Google Scholar 

  8. Seifert A., Greenblatt D. and Wygnanski I.J. (2002). Active separation control: an overview of Reynolds and Mach numbers effects. Aerosp. Sci. Technol. 8(3): 569–582

    Google Scholar 

  9. Lee C., Hong G., Ha Q.P. and Mallinson S.G. (2003). A piezoelectrically actuated micro synthetic jet for active flow control. Sens. Actuators A Phys. 108(1): 168–174

    Article  Google Scholar 

  10. Lin, J.C.: Review of research on low-profile vortex generators to control boundary-layer separation, In: Progress in Aerospace Sciences, vol. 38, pp. 389–420. Elsevier, (2002)

  11. Holden H. and Babinsky H. (2007). Effect of microvortex generators on separated normal shock/boundary layer interactions. J. Aircr. 44(1): 170–174

    Article  Google Scholar 

  12. Babinsky, H., Makinson, N.J., Morgan, C.E.: Micro-vortex generator flow control for supersonic engine inlets. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA Paper 2007-0521 (2007)

  13. Ashill, P., Fulker, J., Hackett, K.: Research at DERA on sub boundary layer vortex generators (SBVGs). In: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA Paper 2001-0887 (2001)

  14. Anderson, B.H., Tinapple, J., Surber, L.: Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation. In: 3rd AIAA Flow Control Conference, San Francisco, AIAA Paper 2006-3197 (2006)

  15. Lee, S., Loth, E., Wang, C.: LES of supersonic turbulent boundary layers with μVG’s, AIAA-2007-3916. In: 25th AIAA Applied Aerodynamics Conference, Miami, June 25–28, (2007)

  16. Ogawa H. and Babinsky H. (2006). Evaluation of wave drag reduction by flow control. Aerosp. Sci. Technol. 10(1): 1–8

    Article  Google Scholar 

  17. Stanewsky, E., Delery, J., Fulker, J., Matteis, P. (eds.).: Drag reduction by shock and boundary Layer control (EUROSHOCK II). Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 80, Springer, Heidelberg (2002)

  18. Milholen, II W.E., Owens, L.R.: On the application of contour bumps for transonic drag reduction. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, NV, AIAA Paper 2005–0462 (2005)

  19. Pätzold, M., Lutz, T., Krämar, E., Wagner, S.: Numerical optimization of finite shock control bumps. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2006-1054 (2006)

  20. Bahi, L., Ross, J.M., Nagamatsu, H.T.: Passive shock wave/boundary layer control for transonic airfoil drag reduction. In: 21st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 1983–137 (1983)

  21. Gibson T., Babinsky H. and Squire L.C. (2000). Passive control of shock wave/boundary-layer interactions. Aeronaut. J. 104(1033): 129–140

    Google Scholar 

  22. Smith A.N., Babinsky H., Fulker J. and Ashill P.R. (2004). Shock-wave/boundary-layer interaction control using streamwise slots in transonic flows. J. Aircr. 41(3): 540–546

    Article  Google Scholar 

  23. Holden H.A. and Babinsky H. (2005). Separated shock-boundary-layer interaction control using streamwise slots. J. Aircr. 42(1): 166–171

    Article  Google Scholar 

  24. Wong, W.S., Qin, N., Sellars, N.: A numerical study of transonic flow in a wind tunnel over 3D bumps. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2005–1057, (2005)

  25. Srinivasen K., Loth E. and Dutton J.C. (2006). Aerodynamics of recirculating flow control devices for normal shock/boundary layer interactions. AIAA J. 44(4): 751–763

    Article  Google Scholar 

  26. Ogawa, H., Babinsky, H.: Shock/Boundary-layer interaction control using three-dimensional bumps for transonic wings. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA Paper 2007–0324 (2007)

  27. Pätzold, M.: Auslegungsstudien zu 3-D shock-control-bumps mittels numerischer optimierung. PhD Dissertation, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Babinsky.

Additional information

Communicated by K. Hannemann.

This paper is based on the invited lecture presented by the first author at the 26th International Symposium on Shock Waves, Göttingen, Germany, July 15–20, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babinsky, H., Ogawa, H. SBLI control for wings and inlets. Shock Waves 18, 89–96 (2008). https://doi.org/10.1007/s00193-008-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0149-7

Keywords

PACS

Navigation