Skip to main content

Advertisement

Log in

The biology behind fascial defects and the use of implants in pelvic organ prolapse repair

  • 2005 IUGA Grafts Roundtable
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Implant materials are increasingly being used in an effort to reduce recurrence after prolapse repair with native tissues. Surgeons should be aware of the biology behind both the disease as well as the host response to various implants. We will discuss insights into the biology behind hernia and abdominal fascial defects. Those lessons from “herniology” will, wherever possible, be applied to pelvic organ prolapse (POP) problems. Then we will deal with available animal models, for both the underlying disease and surgical repair. Then we will go over the features of implants and describe how the host responds to implantation. Methodology of such experiments will be briefly explained for the clinician not involved in experimentation. As we discuss the different materials available on the market, we will summarize some results of recent experiments by our group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wagh PV, Read RC (1971) Collagen deficiency in rectus sheath of patients with inguinal herniation. Proc Soc Exp Biol Med 137:382–384

    CAS  Google Scholar 

  2. Friedman DW, Boyd CD, Norton P et al (1993) Increases in type III collagen gene expression and protein synthesis in patients with inguinal hernias. Ann Surg 218:754–760

    Article  PubMed  CAS  Google Scholar 

  3. Klinge U, Zheng H, Si ZY et al (1999) Expression of the extracellular matrix proteins collagen I, collagen III, fibrnectin and matrix metalloproteinase 1 and 13 in the skin of patients with inguinal hernia. Eur Surg Res 31:480–490

    Article  PubMed  CAS  Google Scholar 

  4. He Y, Chen J, Ren J et al (2002) Type I collagen inhibits hydroxyl radical-induced apoptosis. J Biochem 132:373–379

    PubMed  CAS  Google Scholar 

  5. Cannon DJ, Read RC (1981) Metastatic emphysema: e mechanism for acquiring inguinal herniation. Ann Surg 194:270–278

    Article  PubMed  CAS  Google Scholar 

  6. Jackson SR, Avery NC, Tarlton JF et al (1996) Changes in metabolism of collagen in genitourinary prolapse. Lancet 347:1658–1661

    Article  PubMed  CAS  Google Scholar 

  7. Bellon JM, Bajo A, Honduvilla NG et al (2001) Fibroblasts from the transversalis fascia of young patients with direct inguinal hernias show constitutive MMP-2 overexpression. Ann Surg 233:287–291

    Article  PubMed  CAS  Google Scholar 

  8. Uden A, Lindhagen T (1988) Inguinal hernia in patients with congenital dislocation of the hip: a sign of general connective tissue disorder. Acta Orthop Scand 59:667–668

    Article  PubMed  CAS  Google Scholar 

  9. Cannon DJ, Casteel L, Read RC (1984) Abdominal aortic aneurysm, Leriche syndrome, inguinal herniation and smoking. Arch Surg 119:387–389

    PubMed  CAS  Google Scholar 

  10. Agren MS, Jorgensen LN, Andersen M et al (1998) Matrix metalloproteinase 9 level predicts optimal collagen deposition during early wound repair in humans. Br J Surg 85:68–71

    Article  PubMed  CAS  Google Scholar 

  11. Bielicki K, Pulawski R (1988) Is cigarette smoking a causative factor in the development of inguinal hernia? Pol Tyg Lek 43:974–976

    Google Scholar 

  12. Christianson RE (1980) The relationship between maternal smoking and the incidence of congenital anomalies. Am J Epidemiol 112:684–695

    PubMed  CAS  Google Scholar 

  13. Weber AM, Buchsbaum G, Chen B et al (2004) Basic science and translations research in female pelvic floor disorders: proceedings of an NIH-sponsored meeting. Neurourol Urodyn 23:288–301

    Article  PubMed  Google Scholar 

  14. Rortveit G, Hannestad YS, Daltveit AK et al (2001) Age- and type-dependent effects of parity on urinary incontinence: the Norwegian EPINCONT study. Obstet Gynecol 98:1004–1010

    Article  PubMed  CAS  Google Scholar 

  15. Sievert KD, Bekircioglu ME, Tsai T et al (2001) The effect of simulated birth trauma and/or ovariectomy on rodent continence mechanism. Part I: Functional and structural change. J Urol 166:311–317

    Article  PubMed  CAS  Google Scholar 

  16. Cannon TW, Ferguson C, Wojcik EM et al (2002) Effects of vaginal distension on urethral anatomy and function. B J U Int 90:403–407

    CAS  Google Scholar 

  17. Damaser MS, Ferguson CL, Broxton-King C et al (2003) Functional and neuroanatomical effects of vaginal distension and pudendal nerve crush in the female rat. J Urol 170:1027–1031

    Article  PubMed  Google Scholar 

  18. Moalli PA, Howden NS, Lowder J et al (2005) A rat model to study the structural properties of the vagina and its supportive tissues. Am J Obstet Gynecol 192:80–88

    Article  PubMed  Google Scholar 

  19. Janssens LAA, Peeters S (1997) Comparisons between stress incontinence in women and sphincter mechanism incompetence in the female dog. Veter Rec 141:620–625

    CAS  Google Scholar 

  20. Clark AL, Otto LN, Slayden OD et al (2002) Raloxifene suppression of vaginal smooth muscle. In: Proceedings of the 23rd annual meeting of the American Urogynecologic Society (Abstract), San Francisco, USA

  21. Coates KW, Gibson S, Williams LF et al (1995) The squirrel monkey as an animal model of pelvic relaxation: an evaluation of a large breeding colony. Am J Obstet Gynecol 173:1664–1669

    Article  PubMed  CAS  Google Scholar 

  22. Pierce LM, Reyes M, Thor KB et al (2003) Innervation of the levator ani muscles in the female squirrel monkey. Am J Obstet Gynecol 188:1141–1147

    Article  PubMed  Google Scholar 

  23. Mattson JA, Kuehl T, Yandell P et al (2005) Evaluation of the aged female baboon as a model of pelvic organ prolapse and pelvic reconstructive surgery. Am J Obstet Gynecol 192:1395–1398

    Article  PubMed  Google Scholar 

  24. Klinge U, Conze J, Limberg W et al (1996) Pathophysiology of the abdominal wall. Chirurg 67:229–233

    PubMed  CAS  Google Scholar 

  25. Junge K, Klinge U, Prescher A et al (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5:113–118

    Article  PubMed  CAS  Google Scholar 

  26. Junge K, Peiper C, Rosch R et al (2002) Effect of tension induced by Shouldice repair on postoperative course and long-term outcome. Eur J Surg 168:329–333

    Article  PubMed  Google Scholar 

  27. Seidel W, Tauber R, Hoffschulte KH (1974) Measurements of the solidity of sutures of the abdominal wall. Chirurg 45:266–272

    PubMed  CAS  Google Scholar 

  28. Klosterhalfen B, Klinge U, Hermann SB, Schumpelick V (2000) Pathology of traditional surgical nets for hernia repair after long-term implantation in humans. Chirurg 71:43–51

    PubMed  CAS  Google Scholar 

  29. Liles W, Van Voorhis WC (1995) Nomenclature and biological significance of cytokines involved in inflammation and host immune response. J Infect Dis 172:1573–1582

    PubMed  CAS  Google Scholar 

  30. Vroman L, Adams AL (1969) Identification of absorbed protein films by exposure to antisera and water vapor. J Biomed Mater Res 3:669–671

    Article  PubMed  CAS  Google Scholar 

  31. Tang L, Eaton JW (1993) Fibrinogen mediates acute inflammatory responses to biomaterials. J Exp Med 178:2147–2156

    Article  PubMed  CAS  Google Scholar 

  32. Tang L, Eaton JW (1995) Inflammatory responses to biomaterials. Am J Clin Pathol 103:466–471

    PubMed  CAS  Google Scholar 

  33. Horowitz SM, Gonzales JB (1997) Effects of polyethylene on macrophages. J Orthop Res 15:50–56

    Article  PubMed  CAS  Google Scholar 

  34. Klosterhalfen B, Junge K, Hermanns B, Klinge U (2002) Influence of implantation interval on the long-term biocompatibility of surgical mesh. Br J Surg 89:1043–1048

    Article  PubMed  CAS  Google Scholar 

  35. Junge KR (2002) Influence of mesh materials on collagen deposition in a rat model. J Invest Surg 15:319–328

    Article  PubMed  CAS  Google Scholar 

  36. Klosterhalfen B, Klinge U, Schumpelick V (1998) Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials 19:2235–2246

    Article  PubMed  CAS  Google Scholar 

  37. Besim H, Yalcin Y, Hamamci O et al (2002) Prevention of intra-abdominal adhesions produced by polypropylene mesh. Eur Surg Res 34:239–243

    Article  PubMed  CAS  Google Scholar 

  38. Klinge U, Losterhalfe B, Birkenhaure V et al (2002) Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 10:208–214

    Article  CAS  Google Scholar 

  39. Bobyn JD, Wilson GJ, Macgregor DC, Pilaar PM, Weatherly GC (1982) Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants. Biomed Mater Res 16:571–584

    Article  CAS  Google Scholar 

  40. Pourdeyhimi B (1989) Porosity of surgical mesh fabrics: new technology. J Biomed Mater Res 23:145–152

    Article  PubMed  CAS  Google Scholar 

  41. Beets GL, Go PM, van Mameren H (1996) Foreign body reactions to monofilament and braided polypropylene mesh used as preperitoneal implants in pigs. Eur J Surg 162:823–825

    PubMed  CAS  Google Scholar 

  42. Rosch R, Junge K, Hölzl F et al (2004) How to construct a mesh. In: Schumpelick V, Nyhus LM (eds) Meshes: benefits and risks. Springer, Berlin Heidelberg New York, pp 179–184

    Google Scholar 

  43. Bellon JM, Contreras LA, Bujan J, Palomares D, Carrera-San Martin A (1998) Tissue response to polypropylene meshes used in the repair of abdominal wall defects. Biomaterials 19(7–9):669–675

    Article  PubMed  CAS  Google Scholar 

  44. Alponat A, Lakshminarasappa SR, Yavuz N, Goh PM (1997) Prevention of adhesions by Seprafilm, an absorbable adhesion barrier: an incisional hernia model in rats. Am Surg 63(9):818–819

    PubMed  CAS  Google Scholar 

  45. Claerhout F, Deprest J, Zheng F, Konstantinovic M, Lagae P, De Ridder D (2003) Long term evaluation of the tissue response and mechanical properties of two collagen based and polypropylene implants in a rabbit model for abdominal wall repair. Neurourol Urodyn 5:516–517

    Google Scholar 

  46. Walter A, Morse A, Leslie K et al (2003) Changes in tensile strength of cadaveric human fascia lata after implantation in a rabbit vagina model. Urology 169:1907–1910

    Article  Google Scholar 

  47. Zheng F, Lin Y, Verbeken E et al (2004) Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol 191:1961–1970

    Article  PubMed  CAS  Google Scholar 

  48. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW (2001) Xenogeneic extracellular matrix grafts elicit a Th2-restricted immune response. Transplantation 71(11):1631–1640

    Article  PubMed  CAS  Google Scholar 

  49. Chu CC, Welch L (1985) Characterisation of morphologic and mechanical properties of surgical mesh fabrics. J Biomed Mater Res 19:903–916

    Article  PubMed  CAS  Google Scholar 

  50. Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21

    Article  Google Scholar 

  51. Klinge U, Conze J, Limberg W, Brucker C, Ottinger AP, Schumpelick V (1996) Pathophysiology of the abdominal wall. Chirurg 67(3):229–233

    PubMed  CAS  Google Scholar 

  52. Amid PK, Shulman AG, Lichtenstein IL (1992) Selecting synthetic mesh for the repair of groin hernia. Postgrad Gen Surg 4:150–155

    Google Scholar 

  53. Moriss–Stiff GJ, Hughes LE (1998) The outcomes of nonabsorbable mesh placed within the abdominal cavity: literature review and clinical experience. J Am Coll Surg 186(3):352–367

    Article  Google Scholar 

  54. Konstantinovic M, Pille E, Malinowska M, Verbeken E, De Ridder D, Deprest J (2005) Tensile strength and host response towards different polypropylene implant materials used for augmentation of fascial repair in a rat model. Int Urogynaecol J 16:S120–S121 (Abstract 375)

    Google Scholar 

  55. Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long term complications associated with proesthetic repair of incisional hernias. Arch Surg 133:378–382

    Article  PubMed  CAS  Google Scholar 

  56. Fitzgerald MP, Mollenhauer J, Bitterman P, Brubaker L (1999) Functional failure of fascia lata grafts. Am J Obstet Gynecol 181:1339–1346

    Article  PubMed  CAS  Google Scholar 

  57. Buck BE, Malinin TI (1990) Human immunodeficiency virus cultured from bone: implications for transplantation. Clin Orthop 251:249–253

    PubMed  Google Scholar 

  58. Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, Voytik SL (1996) Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 60:107–114

    Article  PubMed  CAS  Google Scholar 

  59. Prevel CD, Eppley BL, Summerlin DJ, Jack JR, McCarty, Badylak SF (1995) Small intestinal submucosa: use in repair of rodent abdominal wall defects. Ann Plast Surg 35:374–380

    Article  PubMed  CAS  Google Scholar 

  60. Badylak SF, Kokini K, Tullius B, Whitson B (2001) Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res 99:282–287

    Article  PubMed  CAS  Google Scholar 

  61. Konstantinovic M, Lagae P, Zheng F, Verbeken E, De Ridder D, Deprest J (2005) Comparison of host response to polypropylene and non-cross linked porcine small intestine serosal derived collagen implants in a rat model. Br J Obstet Gynaecol 112:1–7

    Google Scholar 

  62. Zheng F, Verbeken E, De Ridder D, Deprest J (2005) Improved surgical outcome by modification of Pelvicol xenograft in abdominal wall reconstruction in rats. Neurourol Urodyn 24(4):362–368

    Article  PubMed  Google Scholar 

  63. Hunt JA, Abrams KR, Williams DF (1994) Modelling the pattern of cell distribution around implanted materials. Anal Cell Pathol 7:43–52

    PubMed  CAS  Google Scholar 

  64. Zheng F, Xu L, Verbeken E, De Ridder D, Deprest J (2004) Th1 vs Th2 Inflammatory responses to porcine dermal collagen and polyprolene implants in a mouse model. J Soc Gynecol Investig 11:271, 163A

    Google Scholar 

  65. de Tayrac R, Alves A, Thérin M (2005) Abstracts of 30th Annual Congress of the International Urogynaecology Association, Copenhaguen, Int Urogynecol J Pelvic Foor Dysfunct 16:S49, (abstract 61)

    Google Scholar 

Download references

Acknowledgements

Our own animal research has been supported by unconditional grants from Tyco Healthcare, Bard, and Cook. The companies may also have donated standard commercially available implants for experimental implantation. None had input into the surgical protocols, randomization tables, or control on data analysis nor its reporting. The authors have no financial interests in these companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Deprest.

Additional information

Transcript of a lecture given at the 2006 IUGA Grafts Roundtable, in Fort Lauderdale, FL (USA), on July 9, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deprest, J., Zheng, F., Konstantinovic, M. et al. The biology behind fascial defects and the use of implants in pelvic organ prolapse repair. Int Urogynecol J 17 (Suppl 1), 16–25 (2006). https://doi.org/10.1007/s00192-006-0101-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-006-0101-2

Keywords

Navigation