Skip to main content
Log in

Single-differenced models for GNSS-acoustic seafloor point positioning

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Seafloor transponder coordinates are determined by measurements between a ship-borne GNSS-acoustic transducer and the transponder. Differencing techniques can be applied to eliminate the impact of measurement biases for precise positioning effectively. The problem is that the correlations between differenced measurements must be adequately considered in the covariance matrix, which might cause a great number of calculations. This paper presents a set of conversion formulae to derive the differenced solution from the undifferenced model without nuisance parameters, and then we propose a dimension-reduction algorithm to fast solve the Gauss–Markov model augmented with nuisance parameters. The equivalence of the differenced and undifferenced solution is discussed within a wider range. It shows that: (1) the undifferenced solution can be converted into the differenced solution with only a few additional calculations; (2) there are a class of differencing schemes which are completely equivalent to each other having unique differencing equivalence weight (DEW) matrix; (3) the proposed algorithm is more efficient and has a good numerical stability relative to the blocking–stacking algorithm and the one-by-one elimination. The simulation and the real trial performed in a 3000-m depth sea area verified the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data included in this study are available upon reasonable request from the corresponding author, and the simulated data can be shared online. The algorithms are opened at https://github.com/geoios/DRD-Algorithm.

References

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling non-linear station motions. J Geophys Res Solid Earth 121:6109–6131

    Article  Google Scholar 

  • Baarda W (1973) S-transformation and criterion matrices. Neth Geod Comm Delft Neth

  • Baxsalary JK (1984) A study of the equivalence between a Gauss–Markoff model and its augmentation by nuisance parameters. Stat J Theor Appl Stat 15:3–35

    Google Scholar 

  • Blum JA, Chadwell CD, Driscoll N, Zumberge MA (2010) Assessing slope stability in the Santa Barbara Basin, California, using seafloor geodesy and CHIRP seismic data. Geophys Res Lett 37:438–454

    Article  Google Scholar 

  • Boomkamp H, Dow J (2004) Large scale GPS processing at ESOC for LEO, GNSS and real-time applications. In: Proceedings of IGS workshop and symposium. 1–6 March 2004, Berne, Switzerland

  • Chadwell CD, Spiess FN (2008) Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data. J Geophys Res Solid Earth 113:B04415. https://doi.org/10.1029/2007JB004936

    Article  Google Scholar 

  • Chadwell CD, Spiess FN, Hildebrand JA, Sweeney AD (1996) Precision acoustic geodetic measurement of seafloor motion over 10 km. J Acoust Soc Am 100:2669–2669

    Article  Google Scholar 

  • Chadwell CD, Spiess FN, Hildebrand JA et al (1997) Sea floor strain measurement using GPS and acoustics. In: Segawa J, Fujimoto H, Okubo S (eds) Gravity, geoid and marine geodesy. Springer, Berlin Heidelberg, pp 682–689

    Chapter  Google Scholar 

  • Chadwick WW Jr, Stapp M (2002) A deep-sea observatory experiment using acoustic extensometers: precise horizontal distance measurements across a mid-ocean ridge. IEEE J Ocean Eng 27:193–201

    Article  Google Scholar 

  • Chen HY, Yu SB, Tung H et al (2011) GPS medium-range kinematic positioning for the seafloor geodesy of eastern Taiwan. Eng J 15:17–24

    Article  Google Scholar 

  • Chen H, Jiang W, Ge M, Wickert J, Schuh H (2014) An enhanced strategy for gnss data processing of massive networks. J Geodesy 88(9):857–867

    Article  Google Scholar 

  • Chen G, Liu Y, Liu Y et al (2019) Adjustment of transceiver lever arm offset and sound speed bias for GNSS-acoustic positioning. Remote Sens 11:1606. https://doi.org/10.3390/rs11131606

    Article  Google Scholar 

  • Chen G, Liu Y, Liu Y, Liu J (2020) Improving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations. J Geod 94:1–14. https://doi.org/10.1007/s00190-020-01389-1

    Article  Google Scholar 

  • Chu E, George A (1987) Gaussian elimination with partial pivoting and load balancing on a multiprocessor[J]. Parallel Comput 5(1–2):65–74

    Article  Google Scholar 

  • Fujita M, Ishikawa T, Mochizuki M et al (2006) GPS/Acoustic seafloor geodetic observation: method of data analysis and its application. Earth Planets Space 58:265–275

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang FP, Rothacher M (2006) A new data processing strategy for huge GNSS global networks. J Geod 80(4):199–203

    Article  Google Scholar 

  • Gholami MR, Gezici S, Strom EG (2012) Improved position estimation using hybrid TW-TOA and TDOA in cooperative networks. IEEE Trans Signal Process 60:3770–3785

    Article  Google Scholar 

  • Herring TA (1992) Modeling atmospheric delays in the analysis of space geodetic data. In: Proc Refract Transatmospheric Signals Geod Neth Geod Comm Ser 36 Hague Neth Pp 157–164

  • Kido M, Osada Y, Fujimoto H (2008) Temporal variation of sound speed in ocean: a comparison between GPS/acoustic and in situ measurements. Earth Planets Space 60:229–234

    Article  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, New York

    Book  Google Scholar 

  • Lannes A, Durand S (2003) Dual algebraic formulation of differential GPS. J Geod 77:22–29

    Article  Google Scholar 

  • Li B, Li Z, Zhang Z, Tan Y (2017) ERTK: extra-wide-lane RTK of triple-frequency GNSS signals. J Geod 91:1–17

    Article  Google Scholar 

  • Liu Y, Xue S, Qu G et al (2020) Influence of the ray elevation angle on seafloor positioning precision in the context of acoustic ray tracing algorithm. Appl Ocean Res 105:102403

    Article  Google Scholar 

  • Liu Y, Xu T, Wang J, Mu D (2021) Multibeam seafloor topography distortion correction based on SVP inversion. J Mar Sci Technol: 1–15

  • Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7:223–231

    Article  Google Scholar 

  • Matsumoto Y, Ishikawa T, Fujita M, Sato M, Saito H, Mochizuki M, Yabuki T, Asada A (2008) Weak interplate coupling beneath the subduction zone off Fukushima, NE Japan, inferred from GPS/acoustic seafloor geodetic observation. Earth Planets Space 60:e9–e12

    Article  Google Scholar 

  • Mendes VB, Pavlis EC (2003) Atmospheric refraction at optical wavelengths: problems and solutions. In: Proc 13th Int Laser Ranging Workshop Wash DC Noomen R Klosko Noll C Pearlman M Eds NASACP-2003–212248

  • Osada Y, Fujimoto H, Miura S et al (2003) Estimation and correction for the effect of sound velocity variation on GPS/Acoustic seafloor positioning: an experiment off Hawaii Island. Earth Planets Space 10:e17–e20. https://doi.org/10.1186/BF03352464

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010). DTIC Document

  • Poutanen M, Rózsa S (2020) The Geodesist’s handbook 2020. J Geod 94:1–343. https://doi.org/10.1007/s00190-020-01434-z

    Article  Google Scholar 

  • Sato M, Fujita M, Matsumoto Y et al (2013) Improvement of GPS/acoustic seafloor positioning precision through controlling the ship’s track line. J Geod 87:825–842

    Article  Google Scholar 

  • Schaffrin B, Grafarend E (1986) Generating classes of equivalent linear models by nuisance parameter. Manuscr Geod 11:262–271

    Google Scholar 

  • Seber GAF (2008) A matrix handbook for statisticians. Wiley-Interscience, Hoboken

    Google Scholar 

  • Shen Y, Xu G (2008) Simplified equivalent representation of GPS observation equations. GPS Solutions 12(2):99–108

    Article  Google Scholar 

  • Spiess FN, Chadwell CD, Hildebrand JA et al (1998) Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. Phys Earth Planet Inter 108(2):101–112. https://doi.org/10.1016/S0031-9201(98)00089-2

    Article  Google Scholar 

  • Stewart GW (1995) Gauss, statistics, and gaussian elimination. J Comput Graph Stat 4(1):1–11

    Google Scholar 

  • Sweeney AD, Chadwell CD, Hildebrand JA (2006) Calibration of a seawater sound velocimeter. IEEE J Ocean Eng 31:454–461

    Article  Google Scholar 

  • Teunissen PJG (1985) Zero Order Design: Generalized Inverses, Adjustment, the Datum Problem and S-Transformations. Springer, Berlin Heidelberg

    Google Scholar 

  • Teunissen PJG, Montenbruck O (2017) Springer handbook of global navigation satellite systems. Springer International Publishing

  • Teunissen PJG, Khodabandeh A, Psychas D (2021) A generalized Kalman filter with its precision in recursive form when the stochastic model is misspecified. J Geod 95:108. https://doi.org/10.1007/s00190-021-01562-0

    Article  Google Scholar 

  • Thomson DJ, Dosso SE, Barclay DR (2017) Modeling AUV localization error in a long baseline acoustic positioning system. IEEE J Ocean Eng 43:955–968

    Article  Google Scholar 

  • Vincent HT, Hu SLJ (2002) Method and system for determining underwater effective sound velocity

  • Xin M, Yang F, Liu H et al (2019) Single-difference dynamic positioning method for GNSS-acoustic intelligent buoys systems. J Navig 73:1–12

    Google Scholar 

  • Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135:505–514

    Article  Google Scholar 

  • Xu G (2007) GPS : theory, algorithms, and applications, 2nd edn. Springer, Berlin New York

    Google Scholar 

  • Xu P, Ando M, Tadokoro K (2005) Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques. Earth Planets Space 57:795–808

    Article  Google Scholar 

  • Xue S, Yang Y (2015) Positioning configurations with the lowest GDOP and their classification. J Geod 89:49–71

    Article  Google Scholar 

  • Xue S, Yang Y (2016) Recursive algorithm for fast GNSS orbit fitting. GPS Solut 20:151–157. https://doi.org/10.1007/s10291-014-0424-2

    Article  Google Scholar 

  • Xue S, Yang Y, Dang Y (2014) A closed-form of Newton method for solving over-determined pseudo-distance equations. J Geod 88:441–448

    Article  Google Scholar 

  • Yamada T, Ando M, Tadokoro K, Kazutoshi Sato K, Okuda T, Oike K (2002) Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements. Earth Planets Space 54:871–881

    Article  Google Scholar 

  • Yang Y, Gao W (2006) An optimal adaptive kalman filter. J Geod 80:177–183. https://doi.org/10.1007/s00190-006-0041-0

    Article  Google Scholar 

  • Yang Y, Qin X (2021) Resilient observation models for seafloor geodetic positioning. J Geod 95:79. https://doi.org/10.1007/s00190-021-01531-7

    Article  Google Scholar 

  • Yang F, Lu X, Li J et al (2011) Precise positioning of underwater static objects without sound speed Profile. Mar Geod 34:138–151

    Article  Google Scholar 

  • Yang Y, Xu T, Xue S (2017) Progresses and prospects in developing marine geodetic datum and marine navigation of China. Acta Geod Cartogr Sin 46:1–8

    Google Scholar 

  • Yang Y, Liu Y, Sun D et al (2020) Seafloor geodetic network establishment and key technologies. Sci China Earth Sci 8:1188–1198

    Article  Google Scholar 

  • Zhao S, Wang Z, He K, et al (2019) Investigation on Stochastic Model Refinement for Precise Underwater Positioning. IEEE J Ocean Eng

Download references

Acknowledgements

This study was supported by the National Laboratory for Marine Science and Technology of China, Wenhai Program of QNLM (2021WHZZB1005). It is also partially supported by the Central Public-interest Scientific Institution Basal Research Fund (AR2115). We are very grateful to the three reviewers for their constructive comments, which play an important promotion role in improving the strictness of this study.

Author information

Authors and Affiliations

Authors

Contributions

SQX (Shuqiang Xue) proposed the main conception, and all the authors contributed to the study and experimental design. Material preparation, data collection and analysis were performed by SQX and YXY (Yuanxi Yang). The first draft of the manuscript was written by SQX (Shuqiang Xue) and then revised and commented by YXY and WLY on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuqiang Xue.

Appendices

Appendix A: Eigenvalue decomposition of DEW matrix

According to the eigenvalue decomposition definition, the eigenpolynomial of \(\widehat{{\mathbf{P}}}_{{\varepsilon_{L} }}\) reads (Seber 2008)

$$ \begin{gathered} p(\lambda ) = \det \left( {\widehat{P}_{{\varepsilon_{L} }} - \lambda {\mathbf{I}}} \right) \hfill \\ = \left| {\begin{array}{*{20}c} {(n - 1)/n - \lambda } & { - 1/n} & \cdots & { - 1/n} \\ { - 1/n} & {(n - 1)/n - \lambda } & \cdots & { - 1/n} \\ \vdots & \vdots & \ddots & \vdots \\ { - 1/n} & { - 1/n} & \cdots & {(n - 1)/n - \lambda } \\ \end{array} } \right|, \hfill \\ \end{gathered} $$
(A1)

where \(\lambda\) is the eigenvalue. As the determinant is invariant to the elementary operation adding one row to the other row, respectively adding the nth, (n-1)th, …, 2nd rows to the first row of (A1), we have

$$ p(\lambda ) = - \lambda n\left| {\begin{array}{*{20}c} {1/n} & { - 1/n} & \cdots & { - 1/n} \\ {1/n} & {(n - 1)/n - \lambda } & \cdots & { - 1/n} \\ \vdots & \vdots & \ddots & \vdots \\ {1/n} & { - 1/n} & \cdots & {(n - 1)/n - \lambda } \\ \end{array} } \right|. $$
(A2)

In the same way, the first column multiple -1 and, respectively, adding it to the 2nd, 3rd and nth columns of (A2) results in

$$ p(\lambda ) = - \lambda n\left| {\begin{array}{*{20}c} {1/n} & 0 & \cdots & 0 \\ {1/n} & {1 - \lambda } & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ {1/n} & 0 & \cdots & {1 - \lambda } \\ \end{array} } \right| = - \lambda (1 - \lambda )^{n - 1} . $$
(A3)

Then, we can draw that there are a zero eigenvalue and n-1 multiple eigenvalues 1 s.

Next, we will deduce the eigenvectors of (A1) as follows:

(a) For the zero eigenvalue, the eigenvector is the nonzero solution of the following equation system:

$$ \left[ {\begin{array}{*{20}c} {(n - 1)/n} & { - 1/n} & \cdots & { - 1/n} \\ { - 1/n} & {(n - 1)/n} & \cdots & { - 1/n} \\ \vdots & \vdots & \ddots & { - 1/n} \\ { - 1/n} & { - 1/n} & \cdots & {(n - 1)/n} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {x_{1} } \\ {x_{2} } \\ \vdots \\ {x_{n} } \\ \end{array} } \right] = {\mathbf{0}}{\mathbf{.}} $$
(A4)

Similarly, with the above elementary operations, respectively, adding the nth, (n-1)th, …, 2nd equations to the first equation, Eq. (A4) becomes

$$ \left[ {\begin{array}{*{20}c} 0 & 0 & \cdots & 0 \\ { - 1/n} & {(n - 1)/n} & \cdots & { - 1/n} \\ \vdots & \vdots & \ddots & { - 1/n} \\ { - 1/n} & { - 1/n} & \cdots & {(n - 1)/n} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {x_{1} } \\ {x_{2} } \\ \vdots \\ {x_{n} } \\ \end{array} } \right] = {\mathbf{0}}{\mathbf{.}} $$
(A5)

Further, respectively, subtracting the nth equation from the 2nd, 3rd and nth equations, we have

$$ \left[ {\begin{array}{*{20}c} 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & { - 1} \\ \vdots & \vdots & \ddots & \vdots & { - 1} \\ 0 & 0 & \cdots & 1 & { - 1} \\ { - 1/n} & { - 1/n} & \cdots & { - 1/n} & {(n - 1)/n} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {x_{1} } \\ \begin{gathered} x_{2} \hfill \\ x_{3} \hfill \\ \end{gathered} \\ \vdots \\ {x_{n} } \\ \end{array} } \right] = {\mathbf{0,}} $$
(A6)

and then, we can write out the solution system of Eq. (A4) as

$$ \left[ {\begin{array}{*{20}c} {x_{1} } \\ \begin{gathered} x_{2} \hfill \\ x_{3} \hfill \\ \end{gathered} \\ \vdots \\ \begin{gathered} x_{n - 1} \hfill \\ x_{n} \hfill \\ \end{gathered} \\ \end{array} } \right] = k_{1} \left[ {\begin{array}{*{20}c} 1 \\ \begin{gathered} 1 \hfill \\ 1 \hfill \\ \end{gathered} \\ \vdots \\ \begin{gathered} 1 \hfill \\ 1 \hfill \\ \end{gathered} \\ \end{array} } \right] \quad k_{1} \in R, $$
(A7)

i.e., \({\mathbf{1}}_{n} = \left[ {1 \, 1 \, \cdots { 1}} \right]^{T}\) is the corresponding eigenvector, and its standard form reads

$$ {\mathbf{s}}_{n} = \left[ {n^{ - 1/2} \,\, n^{ - 1/2} \, \cdots \, n^{ - 1/2} } \right]^{T} . $$
(A8)

(b) For multiple eigenvalues 1 s, the eigenvectors are the nonzero solutions of the following equation system:

$$ \left[ {\begin{array}{*{20}c} { - 1/n} & { - 1/n} & \cdots & { - 1/n} \\ { - 1/n} & { - 1/n} & \cdots & { - 1/n} \\ \vdots & \vdots & \ddots & \vdots \\ { - 1/n} & { - 1/n} & \cdots & { - 1/n} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {x_{1} } \\ {x_{2} } \\ \vdots \\ {x_{n} } \\ \end{array} } \right] = {\mathbf{0}}{\mathbf{.}} $$
(A9)

Similarly, with the above deduction, respectively, subtracting the first equation from the nth, (− 1)th, …, 2nd equations, we have

$$ \left[ {\begin{array}{*{20}c} { - 1/n} & { - 1/n} & \cdots & { - 1/n} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {x_{1} } \\ {x_{2} } \\ \vdots \\ {x_{n} } \\ \end{array} } \right] = {\rm 0,} $$
(A10)

then, we can write out the solution system of Eq. (A9) as

$$ \left[ {\begin{array}{*{20}c} {x_{1} } \\ \begin{gathered} x_{2} \hfill \\ x_{3} \hfill \\ \end{gathered} \\ \vdots \\ \begin{gathered} x_{n - 1} \hfill \\ x_{n} \hfill \\ \end{gathered} \\ \end{array} } \right] = k_{2} \left[ {\begin{array}{*{20}c} { - 1} \\ \begin{gathered} 1 \hfill \\ 0 \hfill \\ \end{gathered} \\ \vdots \\ \begin{gathered} 0 \hfill \\ 0 \hfill \\ \end{gathered} \\ \end{array} } \right]{ + }k_{3} \left[ {\begin{array}{*{20}c} { - 1} \\ \begin{gathered} 0 \hfill \\ 1 \hfill \\ \end{gathered} \\ \vdots \\ \begin{gathered} 0 \hfill \\ 0 \hfill \\ \end{gathered} \\ \end{array} } \right]{ + }...{ + }k_{n - 1} \left[ {\begin{array}{*{20}c} { - 1} \\ \begin{gathered} 0 \hfill \\ 0 \hfill \\ \end{gathered} \\ \vdots \\ \begin{gathered} 0 \hfill \\ 1 \hfill \\ \end{gathered} \\ \end{array} } \right] \, {\rm{where}}\, k_{2} ,k_{3} ,...,k_{n - 1} \in R, $$
(A11)

which can be used to define the n-1 eigenvectors.

Based on the above two cases (a) and (b), the eigenvectors can be given by the matrix

$$ {\mathbf{S}} = \left[ {\begin{array}{*{20}c} 1 & { - 1} & \cdots & { - 1} \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \\ \end{array} } \right], $$
(A12)

which can be orthogonalized to be the following form:

$$ {\mathbf{Q}} = \left[ {\begin{array}{*{20}c} 1 & { - 1} & { - 1/2} & { - 1/3} & \cdots & { - 1/(n - 1)} \\ 1 & 1 & { - 1/2} & { - 1/3} & \cdots & { - 1/(n - 1)} \\ 1 & 0 & 1 & { - 1/3} & \cdots & { - 1/(n - 1)} \\ 1 & 0 & 0 & 1 & \cdots & { - 1/(n - 1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right]. $$
(A13)

Moreover, we can obtain its standardization form as

$$ {\mathbf{R}}^{T} : = \left[ {\begin{array}{*{20}c} {\frac{1}{\sqrt n }} & { - \sqrt{\frac{1}{2}} } & { - \sqrt{\frac{1}{6}} } & { - \sqrt{\frac{1}{12}} } & \cdots & { - \sqrt {\frac{1}{n(n - 1)}} } \\ {\frac{1}{\sqrt n }} & {\sqrt{\frac{1}{2}} } & { - \sqrt{\frac{1}{6}} } & { - \sqrt{\frac{1}{12}} } & \cdots & { - \sqrt {\frac{1}{n(n - 1)}} } \\ {\frac{1}{\sqrt n }} & 0 & {2\sqrt{\frac{1}{6}} } & { - \sqrt{\frac{1}{12}} } & \cdots & { - \sqrt {\frac{1}{n(n - 1)}} } \\ {\frac{1}{\sqrt n }} & 0 & 0 & {3\sqrt{\frac{1}{12}} } & \cdots & { - \sqrt {\frac{1}{n(n - 1)}} } \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ {\frac{1}{\sqrt n }} & 0 & 0 & 0 & 0 & {(n - 1)\sqrt {\frac{1}{n(n - 1)}} } \\ \end{array} } \right]. $$
(A14)

Finally, we can give the eigenvalue decomposition of the DEW matrix as

$$ \widehat{{\mathbf{P}}}_{{\varepsilon_{L} }} = {\mathbf{R}}^{T} \left[ {\begin{array}{*{20}c} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 1 \\ \end{array} } \right]{\mathbf{R,}} $$
(A15)

where the orthogonal matrix R is defined by 20, i.e.,

$$ {\mathbf{R}} = \left[ {\begin{array}{*{20}c} {\frac{1}{\sqrt n }} & {\frac{1}{\sqrt n }} & {\frac{1}{\sqrt n }} & {\frac{1}{\sqrt n }} & \cdots & {\frac{1}{\sqrt n }} \\ { - \sqrt{\frac{1}{2}} } & {\sqrt{\frac{1}{2}} } & 0 & 0 & \cdots & 0 \\ { - \sqrt{\frac{1}{6}} } & { - \sqrt{\frac{1}{6}} } & {2\sqrt{\frac{1}{6}} } & 0 & \cdots & 0 \\ { - \sqrt{\frac{1}{12}} } & { - \sqrt{\frac{1}{12}} } & { - \sqrt{\frac{1}{12}} } & {3\sqrt{\frac{1}{12}} } & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ { - \sqrt {\frac{1}{n(n - 1)}} } & { - \sqrt {\frac{1}{n(n - 1)}} } & { - \sqrt {\frac{1}{n(n - 1)}} } & { - \sqrt {\frac{1}{n(n - 1)}} } & \cdots & {(n - 1)\sqrt {\frac{1}{n(n - 1)}} } \\ \end{array} } \right]. $$
(A16)

Appendix B: Sequential LS adjustment for deleting observations

According to the recursive LS estimation (Koch 1999), we have

$$ \begin{gathered} {\hat{\mathbf{x}}} = ({\mathbf{N}}_{old} + {\mathbf{A}}_{new}^{T} {\mathbf{P}}_{new} {\mathbf{A}}_{new} )^{ - 1} ({\mathbf{A}}_{old}^{T} {\mathbf{P}}_{old} {\mathbf{L}}_{old} + {\mathbf{A}}_{new}^{T} {\mathbf{P}}_{new} {\mathbf{L}}_{new} ) \hfill \\ \, = {\hat{\mathbf{x}}}_{old} + {\varvec{Q}}_{{{\hat{\mathbf{x}}}_{old} }} {\mathbf{A}}_{new}^{T} ({\mathbf{P}}_{new}^{ - 1} + {\mathbf{A}}_{new} {\varvec{Q}}_{{{\hat{\mathbf{x}}}_{old} }} {\mathbf{A}}_{new}^{T} )^{ - 1} ({\mathbf{L}}_{new} - {\mathbf{A}}_{new} {\hat{\mathbf{x}}}_{old} ). \hfill \\ \end{gathered} $$
(A17)

The above formula illustrates the gain of the previous solution when adding new observations to the previous observation equation system. Once assuming \({\mathbf{P}}_{new}^{{}} = - {\mathbf{P}}_{del}^{{}}\), we can obtain the loss of the solution after removing some observations from the original observations, that

$$ {\hat{\mathbf{x}}} = {\hat{\mathbf{x}}}_{old} - {\mathbf{Ke}}_{del} , $$
(A18)

where

$$ {\mathbf{e}}_{del} : = ({\mathbf{L}}_{del} - {\mathbf{A}}_{del} {\hat{\mathbf{x}}}_{old} ) $$
(A19)

is the prediction error of the deleted observations relative to the previous solution,

$$ {\mathbf{K}}: = {\mathbf{Q}}_{{{\hat{\mathbf{x}}}_{old} }} {\mathbf{A}}_{del}^{T} {\mathbf{S}} $$
(A20)

is the loss information matrix,

$$ {\mathbf{S}}: = ({\mathbf{P}}_{del}^{ - 1} - {\mathbf{A}}_{del} {\mathbf{Q}}_{{{\hat{\mathbf{x}}}_{old} }} {\mathbf{A}}_{del}^{T} )^{ - 1} . $$
(A21)

\({\mathbf{L}}_{del} ,{\mathbf{A}}_{del} ,{\mathbf{P}}_{del}^{{}}\) are, respectively, the deleted observations, and their corresponding design matrix and weight matrix.

In the same way, with the sequential LS adjustment principle, we can write out the loss information formula about the weighted sum of squared residuals, and it reads

$$ {\text{WSSR}} = {\text{WSSR}}_{{{\text{old}}}} - {\text{WSSR}}_{{{\text{del}}}} , $$
(A22)

where

$$ {\text{WRSS}}_{{{\text{del}}}} : = {\mathbf{e}}_{{{\text{del}}}}^{T} {\mathbf{Se}}_{{{\text{del}}}}^{{}} $$
(A23)

is the loss of the previous \({\text{WSSR}}_{{{\text{old}}}}\). Then, we can obtain the sequential formula about the unit weight variance as follows:

$$ \hat{\sigma }_{0}^{2} = \frac{{\hat{\sigma }_{{{\text{old}}}}^{2} t_{{{\text{old}}}} - {\text{WSSR}}_{{{\text{del}}}} }}{{t_{{{\text{old}}}} - n_{{{\text{del}}}} }}, $$
(A24)

where \(\hat{\sigma }_{{{\text{old}}}}^{2}\) is the original estimation, \(t_{{{\text{old}}}}\) is the previous freedom of observations, and \(n_{{{\text{del}}}}\) is the number of deleted observations. In addition, the sequential formula about the co-factor matrix reads

$${\mathbf{Q}}_{{{\hat{\mathbf{x}}} }}: = ({\mathbf{I}} + {\mathbf{KA}}_{del} ){\mathbf{Q}}_{{{\hat{\mathbf{x}}}_{old} }}, $$
(A25)

where K is the loss information matrix defined by (A20). Combining (A24) with (A25), we have \({\mathbf{D}}_{{\hat{x}}} = {\mathbf{Q}}_{{\hat{x}}} \hat{\sigma }_{0}^{2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Yang, Y. & Yang, W. Single-differenced models for GNSS-acoustic seafloor point positioning. J Geod 96, 38 (2022). https://doi.org/10.1007/s00190-022-01613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-022-01613-0

Keywords

Navigation