Skip to main content
Log in

Long-term prediction of polar motion using a combined SSA and ARMA model

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

To meet the need for real-time and high-accuracy predictions of polar motion (PM), the singular spectrum analysis (SSA) and the autoregressive moving average (ARMA) model are combined for short- and long-term PM prediction. According to the SSA results for PM and the SSA prediction algorithm, the principal components of PM were predicted by SSA, and the remaining components were predicted by the ARMA model. In applying this proposed method, multiple sets of PM predictions were made with lead times of two years, based on an IERS 08 C04 series. The observations and predictions of the principal components correlated well, and the SSA \(+\) ARMA model effectively predicted the PM. For 360-day lead time predictions, the root-mean-square errors (RMSEs) of PMx and PMy were 20.67 and 20.42 mas, respectively, which were less than the 24.46 and 24.78 mas predicted by IERS Bulletin A. The RMSEs of PMx and PMy in the 720-day lead time predictions were 28.61 and 27.95 mas, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akulenko LD, Kumakshev SA, Markov YG, Rykhlova LV (2002) Forecasting the polar motions of the deformable Earth. Astron Rep 46(10):858–866. doi:10.1134/1.1515097

    Article  Google Scholar 

  • Akyilmaz O, Kutterer H (2004) Prediction of Earth rotation parameters by fuzzy inference systems. J Geod 78(1):82–93. doi:10.1007/s00190-004-0374-5

    Google Scholar 

  • Akyilmaz O, Kutterer H, Shum CK, Ayan T (2011) Fuzzy-wavelet based prediction of Earth rotation parameters. Appl Soft Comput 11(1):837–841. doi:10.1016/j.asoc.2010.01.003

    Article  Google Scholar 

  • Beckers JM, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic datasets. J Atmos Ocean Tech 20(12):1839–1856. doi:10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2

  • Bizouard C, Gambis D, (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame, 2005. Geodetic reference frames, pp 265–270. Springer, Berlin. doi:10.1007/978-3-642-00860-3_41

  • Bizouard C, Gambis D (2011) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. IERS Earth orientation. IERS notice 2011. ftp://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf

  • Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236. doi:10.1016/0167-2789(86)90031-X

    Article  Google Scholar 

  • Chen JL, Wilson CR (2005) Hydrological excitations of polar motion 1993–2002. Geophys J Int 160(3):833–839. doi:10.1111/j.1365-246X.2005.02522.x

    Article  Google Scholar 

  • Chen Q, Dam VT, Sneeuw N, Collilieux X, Weigelt M, Rebischung P (2013) Singular spectrum analysis for modeling seasonal signals from GPS time series. J Geodyn 72:25–35. doi:10.1016/j.jog.2013.05.005

    Article  Google Scholar 

  • Choi KK, Ray J, Griffiths J, Bae TS (2013) Evaluation of GPS orbit prediction strategies for the IGS ultra-rapid products. GPS Solut 17(3):403–412. doi:10.1007/s10291-012-0288-2

    Article  Google Scholar 

  • Cryer JD, Chan KS (2008) Time series analysis: with application in R. Springer, Berlin, pp 249–276. doi:10.1007/978-0-387-75959-3_11

  • Guo JY, Han YB (2009) Seasonal and inter-annual variations of length of day and polar motion observed by SLR in 1993–2006. Chin Sci Bull 54(1):46–52. doi:10.1007/s11434-008-0504-1

    Article  Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257

    Google Scholar 

  • Jin SG, Hassan AA, Feng GP (2012) Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. J Geodyn 62:40–48. doi:10.1016/j.jog.2012.01.009

    Article  Google Scholar 

  • Kalarus M, Schuh H, Kosek W, Akyilmaz O, Bizouard Ch, Gambis D, Gross R, Jovanovic B, Kumakshev S, Kutterer H, Ma L, Mendes Cerveira PJ, Pasynok S, Zotov L (2010) Achievements of the Earth orientation parameters prediction comparison campaign. J Geod 84(10):587–596. doi:10.1007/s00190-010-0387-1

    Article  Google Scholar 

  • Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process Geophys 13(2):151–159

    Article  Google Scholar 

  • Kondrashov D, Berloff P (2015) Stochastic modeling of decadal variability in ocean gyres. Geophys Res Lett 42(5):1543–1553. doi:10.1002/2014GL062871

    Article  Google Scholar 

  • Kondrashov D, Shprits Y, Ghil M (2010) Gap filling of solar wind data by singular spectrum analysis. Geophys Res Lett 37(15):L15101. doi:10.1029/2010GL044138

    Article  Google Scholar 

  • Kosek W, McCarthy DD, Luzum BJ (1998) Possible improvement of Earth orientation forecast using autocovariance prediction procedures. J Geod 72(4):189–199. doi:10.1007/s001900050160

    Article  Google Scholar 

  • Kosek W, Kalarus M, Niedzielski T (2007) Forecasting of the Earth orientation parameters comparison of different algorithms. In: Capitaine N (ed) Proceedings of the “Journèes systèmes de deréférence spatio-temporels (2007) Observatoire de Paris, 17–19 Sept 2007, Paris, France. pp 155–158

  • Liao D, Wang Q, Zhou Y, Liao XH, Huang CL (2012) Long-term prediction of the Earth orientation parameters by the artificial neural network technique. J Geodyn 62:87–92. doi:10.1016/j.jog.2011.12.004

    Article  Google Scholar 

  • Rial JA, Oh J, Reischmann E (2013) Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat Geosci 6:289–293. doi:10.1038/ngeo1756

    Article  Google Scholar 

  • Schoellhamer DH (2001) Singular spectrum analysis for time series with missing data. Geophys Res Let 28(16):3187–3190. doi:10.1029/2000GL012698

  • Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:10.1016/j.jog.2012.07.007

    Article  Google Scholar 

  • Schuh H, Nagel S, Seitz T (2001) Linear drift and periodic variations observed in long time series of polar motion. J Geod 74(10):701–710. doi:10.1007/s001900000133

    Article  Google Scholar 

  • Schuh H, Ulrich M, Egger D, Müller J, Schwegmann W (2002) Prediction of Earth orientation parameters by artificial neural networks. J Geod 76(5):247–258. doi:10.1007/s00190-001-0242-5

    Article  Google Scholar 

  • Shen Y, Guo JY, Zhao C, Yu X, Li J (2015) Earth rotation parameter and variation during 2005–2010 solved with LAGEOS SLR data. Geod Geodyn 6(1):55–60. doi:10.1016/j.geog.2014.12.002

    Article  Google Scholar 

  • Stamatakos N, Luzum B, Stetzler B, Shumate N, Carter MS (2011) Recent improvements in IERS rapid service/prediction center products. In: Proceedings of the Journées Systèmes de référence spatio-temporels, pp 184–187

  • Su X, Liu L, Hsu H, Wang G (2014) Long-term polar motion prediction using normal time–frequency transform. J Geod 88(2):145–155. doi:10.1007/s00190-013-0675-7

    Article  Google Scholar 

  • Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441. doi:10.1016/j.jhydrol.2012.11.017

    Article  Google Scholar 

  • Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35(3):395–424. doi:10.1016/0167-2789(89)90077-8

    Article  Google Scholar 

  • Wang X, Cheng Y, Wu S, Zhang K (2016) An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement. J Geophys Res 121(3):2193–2211. doi:10.1002/2015JB012573

    Article  Google Scholar 

  • Wyatt MG, Kravtsov S, Tsonis AA (2012) Atlantic multi decadal oscillation and northern hemisphere’s climate variability. Clim Dyn 38(5):929–949. doi:10.1007/s00382-011-1071-8

    Article  Google Scholar 

  • Xu X, Zhou Y (2015) EOP prediction using least square fitting and autoregressive filter over optimized data intervals. Adv Space Res 56(10):2248–2253. doi:10.1016/j.asr.2015.08.007

    Article  Google Scholar 

  • Xu X, Zhou Y, Liao X (2012) Short-term earth orientation parameters predictions by combination of the least-squares, AR model and Kalman filter. J Geodyn 62:83–86. doi:10.1016/j.jog.2011.12.001

    Article  Google Scholar 

  • Yao YB, Yue S, Chen P (2013) A new LS \(+\) AR model with additional error correction for polar motion forecast. Sci China Earth Sci 56(5):818–828. doi:10.1007/s11430-012-4572-3

    Article  Google Scholar 

  • Zotov L (2010) Dynamical modeling and excitation reconstruction as fundamental of Earth rotation prediction. Artif Satell 45(2):95–105. doi:10.2478/v10018-010-0010-y

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions. We are very grateful to the International Earth Rotation and Reference Systems Service (IERS) for providing the polar motion data. This research was supported by the National Natural Science Foundation of China (Grant Nos. 41374009 and 41774001), the Basic Science and Technology Project of China (Grant No. 2015FY310200), and the SDUST Research Fund (Grant No. 2014TDJH101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Guo, J., Liu, X. et al. Long-term prediction of polar motion using a combined SSA and ARMA model. J Geod 92, 333–343 (2018). https://doi.org/10.1007/s00190-017-1065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1065-3

Keywords

Navigation