Abstract
\(W_{0}\) is defined as the potential value of a particular level surface of the Earth’s gravity field called the geoid. Since the most accepted definition of the geoid is understood to be the equipotential surface that coincides with the worldwide mean ocean surface, a usual approximation of \(W_{0}\) is the averaged potential value \(W_{\mathrm{S}}\) at the mean sea surface. In this way, the value of \(W_{0}\) depends not only on the Earth’s gravity field modelling, but also on the conventions defining the mean sea surface. \(W_{0}\) computations performed since 2005 demonstrate that current published estimations differ by up to \(-2.6~\hbox {m}^{2}~\hbox {s}^{-2}\) (corresponding to a level difference of about 27 cm), which could be caused by the differences in the treatment of the input data. The main objective of this study is to perform a new \(W_{0}\) estimation relying on the newest gravity field and sea surface models and applying standardised data and procedures. This also includes a detailed description of the processing procedure to ensure the reproducibility of the results. The following aspects are analysed in this paper: (1) sensitivity of the \(W_{0}\) estimation to the Earth’s gravity field model (especially omission and commission errors and time-dependent Earth’s gravity field changes); (2) sensitivity of the \(W_{0}\) estimation to the mean sea surface model (e.g., geographical coverage, time-dependent sea surface variations, accuracy of the mean sea surface heights); (3) dependence of the \(W_{0}\) empirical estimation on the tide system; and (4) weighted computation of the \(W_{0}\) value based on the input data quality. Main conclusions indicate that the satellite-only component \((n = 200)\) of a static (quasi-stationary) global gravity model is sufficient for the computation of \(W_{0}\). This model should, however, be based on a combination of, at least, satellite laser ranging (SLR), GRACE and GOCE data. The mean sea surface modelling should be based on mean sea surface heights referring to a certain epoch and derived from a standardised multi-mission cross-calibration of several satellite altimeters. We suggest that the uncertainties caused by geographically correlated errors, including shallow waters in coastal areas and sea water ice content at polar regions should be considered in the computation of \(W_{0}\) by means of a weighed adjustment using the inverse of the input data variances as a weighting factor. This weighting factor should also include the improvement provided by SLR, GRACE and GOCE to the gravity field modelling. As a reference parameter, \(W_{0}\) should be time-independent (i.e., quasi-stationary) and it should remain fixed for a long-term period (e.g., 20 years). However, it should have a clear relationship with the mean sea surface level (as this is the convention for the realisation of the geoid). According to this, a suitable recommendation is to adopt a potential value obtained for a certain epoch as the reference value \(W_{0}\) and to monitor the changes of the mean potential value at the sea surface \(W_{\mathrm{S}}\). When large differences appear between \(W_{0}\) and \(W_{\mathrm{S}}\) (e.g., \({>}\pm 2\) m\(^{2}\) s\(^{-2})\), the adopted \(W_{0}\) may be replaced by an updated (best estimate) value. In this paper, the potential value obtained for the epoch 2010.0 (62,636,853.4 m\(^{2}\) s\(^{-2})\) is recommended as the present best estimate for the \(W_{0}\) value. It differs \(-2.6~\hbox {m}^{2}~\hbox {s}^{-2}\) from the so-called IERS \(W_{0}\) value (62,636,856.0 m\(^{2}\) s\(^{-2})\), which corresponds to the best estimate available in 1998.












Similar content being viewed by others
Notes
GRACE: Gravity Recovery and Climate Experiment, http://www.csr.utexas.edu/grace/.
GOCE: Gravity field and steady-state Ocean Circulation Explorer, http://www.esa.int/SPECIALS/GOCE/index.html.
IERS: International Earth Rotation and Reference Systems’ Service, http://www.iers.org.
EGM96: Earth Gravitational Model 1996.
POCM4b: Parallel Ocean Circulation Model.
BGI: Bureau Gravimétrique International, http://bgi.omp.obs-mip.fr/.
CHAMP: Challenging Minisatellite Payload, http://op.gfz-potsdam.de/champ/.
EIGEN: European Improved Gravity model of the Earth by New techniques.
ITG: Institut für Theoretische Geodäsie, Universität Bonn.
UTEX-CSR: The University of Texas at Austin, Center for Space Research, USA.
EGM2008: Earth Gravitational Model 2008.
The size of the compartments used to discretise the sea surface can vary from \(2'\times 2'\) to \(1^{\circ }\times 1^{\circ }\) without causing significant changes in the estimated \(W_{0}\) value, more details in Sánchez (2007).
OpenADB: Open Altimeter Database, Deutsches Geodätisches Forschungsinstitut, Technische Universität München, http://openadb.dgfi.tum.de.
This model is known at present as T-UGOm 2D (Toulouse Unstructured Grid Ocean model 2D), http://sirocco.omp.obs-mip.fr/eng/tools/Tugo/Home/TugoHome.htm.
Generic Mapping Tools, http://gmt.soest.hawaii.edu/.
National Snow and Ice Data Center, http://nsidc.org/.
ECCO-2: Estimating the Circulation and Climate of the Ocean, phase II: High-resolution global-ocean and sea ice data synthesis, http://ecco2.jpl.nasa.gov/.
This correlation should be zero since the spherical harmonic functions are orthogonal; however, it is not zero due to the adjustment procedure required for the empirical computation of the coefficients.
References
Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5:193–201. doi:10.5194/os-5-193-2009
Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4
Andersen OB (2010) The DTU10 gravity field and mean sea surface. In: Presented at Second International Symposium of the Gravity Field of the Earth (IGFS2), Fairbanks, Alaska
Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114:C11001. doi:10.1029/2008JC005179
Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191–199. doi:10.1007/s00190-009-0355-9
Bloßfeld M (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. Deutsche Geodätische Kommission, Reihe C, Heft 745
Bosch W, Dettmering D, Schwatke C (2014) Multi-mission cross-calibration of satellite altimeters: constructing a long-term data record for global and regional sea level change studies. Remote Sens 6(3):2255–2281. doi:10.3390/rs6032255
Bruinsma SL, Lemoine JM, Biancale R, Vales N (2009) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res. doi:10.1016/j.asr.2009.10.012
Bruinsma SL, Marty JC, Balmino G, Biancale R, Foerste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: Presented at the ESA Living Planet Symposium 2010, Bergen, June 27–July 2. Bergen, Noway
Bruinsma SL, Förste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40:3607–3612. doi:10.1002/grl.50716
Burša M (1995a) Report of the International Association of Geodesy Special Commission SC3: fundamental constants. XXI IAG General Assembly Boulder CO, USA
Burša M (1995b) Geoidal potential free of zero-frequency tidal distortion. Earth Moon Planets 71:59–64
Burša M (1995c) Primary and derived parameters of common relevance of astronomy, geodesy, and geodynamics. Earth Moon Planets 69:51–63
Burša M, Šíma Z, Kostelecký J (1992) Determination of the geopotential scale factor from satellite altimetry. Studia geoph et geod 36:101–109. doi:10.1007/BF01614122
Burša M, Raděj K, Šíma Z, True S, Vatrt V (1997) Determination of the geopotential scale factor from TOPEX/Poseidon satellite altimetry. Studia geoph et geod 41:203–215. doi:10.1023/A:1023313614618
Burša M, Kouba J, Raděj K, True S, Vatrt V, Vojtíšková M (1998) Mean Earth’s equipotential surface from TOPEX/Poseidon altimetry. Studia geoph et geod 42:456–466. doi:10.1023/A:1023356803773
Burša M, Groten E, Kenyon S, Kouba J, Raděj K, Vatrt V, Vojtíšková M (2002) Earth’s dimension specified by geoidal geopotential. Studia geoph et geod 46:1–8. doi:10.1023/A:1020014930573
Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vitek V, Vojtíšková M (2007) The geopotential value Wo for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81:103–110. doi:10.1007/s00190-006-0091-3
Carrère L, Lyard F (2003) Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys Res Lett 30:1275. doi:10.1029/2002GL016473
Chelton DB, Ries JC, Haines BJ, Fu LL, Callhan PhS (2001) Satellite altimetry. In: Fu LL, Cazenave A (eds.) Satellite altimetry and earth sciences—a handbook of techniques and applications. International Geophysical Series, vol 69. Academic Press, San Diego, pp 1–132
Chovitz BH (1988) Parameters of common relevance of astronomy, geodesy, and geodynamics. Bulletin Géodésique 62(3):359–367. doi:10.1007/BF02520723
Čunderlík R, Mikula K (2009) Numerical solution of the fixed altimetry–gravimetry BVP using the direct BEM formulation. IAG Symp Ser 133:229–236. doi:10.1007/978-3-540-85426-5_27
Čunderlík R, Minarechová Z, Mikula K (2014) Realization of WHS based on the static gravity field observed by GOCE. In: Marti U (ed) Gravity, geoid and height systems. IAG symposia series, vol 141, pp 211–220. doi:10.1007/978-3-319-10837-7_27
Dahle C, Flechtner F, Gruber C, Koenig D, Koenig R, Michalak G, Neumayer KH (2012) GFZ GRACE level-2 processing standards document for level-2 product release 0005. Scientific Technical Report-Data, 12/02. Potsdam. doi:10.2312/GFZ.b103-1202-25
Dayoub N (2010) The Gauss–Listing gravitational parameter, \(W_{0}\), and its time variation from analysis of sea levels and GRACE. PhD thesis, Newcastle University
Dayoub N, Edwards SJ, Moore P (2012) The Gauss–Listing potential value Wo and its rate from altimetric mean sea level and GRACE. J Geod 86(9):681–694. doi:10.1007/s00190-012-1547-6
Dettmering D, Bosch W (2010) Global calibration of Jason-2 by multi-mission crossover analysis. Mar Geod 33(S1):150–161. doi:10.1080/01490419.2010.487779
Drewes H, Hornik H, Ádám J, Rózsa S (2012) The geodesist’s handbook 2012. J Geod 86(10):793–974. doi:10.1007/s00190-012-0584-1
Drinkwater MR, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core earth explorer. In: Proceedings of 3rd international GOCE user workshop, 6–8 November, 2006, Frascati, Italy, ESA SP-627, pp 1–8. ISBN:92-9092-938-3
Ekman M (1995) What is the geoid? Rep Finn Geod Inst 95(4):49–51
Fetterer F, Knowles K, Meier W, Savoie M (2002) Sea Ice Index. National Snow and Ice Data Center, Boulder. Digital media. http://nsidc.org/data/docs/noaa/g02135_seaice_index/
Förste Ch, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle Ch, Lemoine JM, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, EGU2011-3242-2
Förste C, Bruinsma SL, Flechtner F, Marty JC, Lemoine JM, Dahle C, Abrikosov O, Neumayer KH, Biancale R, Barthelmes F, Balmino G (2012) A preliminary update of the Direct approach GOCE Processing and a new release of EIGEN-6C. In: Presented at the AGU Fall Meeting 2012, San Francisco, USA, 3–7 Dec, Abstract No. G31B-0923
Fu LL, Le Traon PY (2006) Satellite altimetry and ocean dynamics. Comptes Rendus Geosciences 338(14–15):1063–1076. doi:10.1016/j.crte.2006.05.015
Fukushima T (1995) Time ephemeris. Astron Astrophys 294:895–906
Gauss CF (1876) Trigonometrischen und polygonometrischen Rechnungen in der Feldmesskunst. Halle, a. S. Verlag von Eugen Strien. Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am ramsdenschen Zenithsektor. In: Carl Friedrich Gauß Werke, neunter Band. Königlichen Gesellschaft der Wissenschaften zu Göttingen (1903)
Gerlach Ch, Rummel R (2013) Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach. J Geod 87(1):57–67. doi:10.1007/s00190-012-0579-y
Goiginger H, Höck E, Rieser D, Mayer-Gürr T, Maier A, Krauss S, Pail R, Fecher T, Gruber T, Brockmann JM, Krasbutter I, Schuh WD, Jäggi A, Prange L, Hausleitner W, Baur O, Kusche J (2011) The combined satellite-only global gravity field model GOCO02S. In: Presented at the 2011 General Assembly of the European Geosciences Union, Vienna, Austria, 4–8 April, 2011
Grombein Th, Seitz K, Heck B (2015) Height system unification based on the fixed GBVP approach. International Association of Geodesy Symposia. Springer, Berlin, Heidelberg. doi:10.1007/1345_2015_104
Groten E (1999) Report of the International Association of Geodesy Special Commission SC3: fundamental constants. XXII IAG General Assembly, Birmingham
Groten E (2004) Fundamental parameters and current (2004) best estimates of the parameters of common relevance to Astronomy, Geodesy and Geodynamics, The Geodesist’s Handbook 2004. J Geod 77:724–731. doi:10.1007/s00190-003-0373-y
Gruber Th, Abrikosov O, Hugentobler U (2010) GOCE standards. Document GP-TN-HPF-GS-0111, Issue 3.2. Prepared by the European GOCE Gravity Consortium EGG-C. http://earth.esa.int/pub/ESA_DOC/GOCE/
Gruber Th, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280. doi:10.2478/v10156-012-0001-y
Haberkorn C, Bloßfeld M, Bouman J, Fuchs M, Schmidt M (2015) Towards a consistent estimation of the Earth‘s gravity field by combining normal equation matrices from GRACE and SLR. International Association of Geodesy Symposia, vol 143. Springer, Berlin, Heidelberg. doi:10.1007/1345_2015_76
Heck B (1989) A contribution to the scalar free boundary value problem of physical geodesy. Manu Geod 14:87–99
Heck B (2004) Problems in the definition of vertical reference frames. IAG Symp Ser 127:164–173. doi:10.1007/978-3-662-10735-5_22
Heck B (2011) A Brovar-type solution of the fixed geodetic boundary-value problem. Stud Geophys Geod 55:441–454. doi:10.1007/s11200-011-0025-2
Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. IAG Symp Ser 104:116–128. doi:10.1007/978-1-4684-7098-7_14
Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, Wien
IAU (1991) Resolutions of the International Astronomical Union, XXI General Assembly, Buenos Aires, Argentina. https://www.iau.org/administration/resolutions/general_assemblies/
IAU (2000) Resolutions of the International Astronomical Union, XXIV General Assembly, Manchester, United Kingdom. https://www.iau.org/administration/resolutions/general_assemblies/
Ihde J, Mäkinen J, Sacher M (2008) Conventions for the definition and realization of a European Vertical Reference System (EVRS)—EVRS Conventions 2007. IAG Sub-Commission 1.3a EUREF. http://www.bkg.bund.de/evrs/
Ihde J, Barzaghi R, Marti U, Sánchez L, Sideris M, Drewes H, Foerste Ch, Gruber T, Liebsch G, Pail R (2015) Report of the ad-hoc group on an international height reference system (IHRS). In: IAG reports 2011–2015 (Travaux de l’AIG, vol 39)
Ilk KH, Mayer-Gürr T, Feuchtinger M (2003) Gravity field recovery by analysis of short arcs of CHAMP. In: Proceedings of the 2nd science workshop of CHAMP
Le Traon PY, Morrow R (2001) Ocean currents and eddies. In: Fu LL, Cazenave A (eds) Satellite altimetry and Earth sciences. Academic Press, San Diego
Lemoine F, Kenyon S, Factor J, Trimmer R, Pavlis N, Chinn D, Cox C, Kloslo S, Luthcke S, Torrence M, Wang Y, Williamson R, Pavlis E, Rapp R, Olson T (1998) The development of the joint NASA GSFC and the National imagery and mapping agency (NIMA) geopotential model EGM96. NASA, Goddard Space Flight Center, Greenbelt
Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04608. doi:10.1029/2008GL036010
Listing JB (1873) Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Nachrichten der Königlichen Gesellschaft der Wissenschaften und der Georg-August-Universität, 33–98. Göttingen
Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7:207–228
Mather RS (1978) The role of the geoid in four-dimensional geodesy. Mar Geod 1:217–252
Mayer-Gürr T, Eicker A, Ilk KH (2007) ITG-Grace03 gravity field model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace03
Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
Mayer-Gürr T, Rieser D, Hoeck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber Th (2012) The new combined satellite only model GOCO03S. Presented at the International Symposium on Gravity, Geoid and Height Systems GGHS
Mayer-Gürr T, Pail R, Gruber T, Fecher T, Rexer M, Schuh W-D, Kusche J, Brockmann J-M, Rieser D, Zehentner N, Kvas A, Klinger B, Baur O, Höck E, Krauss S, Jäggi A (2015) The combined satellite gravity field model GOCO05s. Presentation at EGU 2015, Vienna, April 2015
McCarthy DD (1996) IERS Conventions (1992). IERS Technical Note 21, Central Bureau of IERS-Observatoire de Paris
Menemenlis D, Campin J, Heimbach P, Hill C, Lee T, Nguyen A, Schodlock M, Zhang H (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercat Ocean Q Newsl 31:13–21
Migliaccio F, Reguzzoni M, Gatti A, Sansò F, Herceg M (2011) A GOCE-only global gravity field model by the space-wise approach. In: Proceedings of the 4th international GOCE user workshop, 31 March–1 April, Munich
Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133. doi:10.1007/s001900050278
Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Gruber Th, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906
Pail R, Bruinsma SL, Migliaccio F, Foerste C, Goiginger H, Schuh WD, Hoeck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi:10.1007/s00190-011-0467-x
Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2007) Earth gravitational model to degree 2160: status and progress. Presented at the XXIV General Assembly of the International Union of Geodesy and Geophysics, Perugia, Italy 2–13
Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916
Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) Correction to “The development of the Earth Gravitational Model 2008 (EGM2008)”. J Geophys Res 118:2633. doi:10.1002/jgrb.50167
Petit G, Luzum B (Eds.) (2010): IERS Conventions 2010. IERS Technical Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt a.M
Rapp R (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71(5):282–289
Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, König R, Loyer S, Neumayer KH, Marty JC, Barthelmes F, Perosanz F, Zhu SY (2002) A high quality global gravity field model from CHAMP GPS tracking data and Accelerometry (EIGEN-1S). Geophys Res Lett 29(14):37-1–37-4. doi:10.1029/2002GL015064
Reigber C, Schwintzer P, Neumayer KH, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Bruinsma SL, Perosanz F, Fayard T (2003) The CHAMP-only Earth gravity field model EIGEN-2. Adv Space Res 31(8):1883–1888. doi:10.1016/S0273-1177(03)00162-5
Rio MH, Andersen O (2009) GUT WP8100 Standards and recommended models. WP8100, ESA-ESRIN, Frascati, Italy, GUT Toolbox, Internal Report. https://earth.esa.int/web/guest/software-tools/gut/gut-resources/documentation
Rülke A, Liebsch G, Schäfer U, Schirmer U, Ihde J (2014) Height system unification based on GOCE gravity field models: benefits and challenges. In: Observation of the system Earth from space—CHAMP, GRACE, GOCE and future missions. Advanced technologies in Earth Sciences, pp 147–153. doi:10.1007/978-3-642-32135-1_19
Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498. doi:10.1007/BF02520239
Sacerdote F, Sansò F (1986) The scalar boundary value problem of physical geodesy. Manu Geod 11:15–28
Sacerdote F, Sansò F (2001) Wo: a story of the height datum problem. In: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover. Nr. 241, pp 49–56
Sacerdote F, Sansò F (2004) Geodetic boundary-value problems and the height datum problem. IAG Symp Ser 127(174):178. doi:10.1007/978-3-662-10735-5_23
Sánchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. IAG Symp Ser 130:638–645. doi:10.1007/978-3-540-49350-1_92
Sánchez L (2008) Approach for the establishment of a global vertical reference level. IAG Symp Ser 132:119–125. doi:10.1007/978-3-540-74584-6_18
Sánchez L (2012) Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System. J Geod Sci 2(4):325–342. doi:10.2478/v10156-012-0002-x
Sánchez L, Dayoub N, Čunderlík R, Minarechová Z, Mikula K, Vatrt V, Vojtíšková M, Šíma Z (2014) \(W_{0}\) estimates in the frame of the GGOS Working Group on Vertical Datum Standardisation. In: Marti U (ed) Gravity, geoid and height systems. IAG symposia series, vol 141, pp 203–210. doi:10.1007/978-3-319-10837-7_26
Savcenko R, Bosch W (2012) EOT11a—empirical ocean tide model from multi-mission satellite altimetry. DGFI, Report No 89
Schaeffer P, Faugére Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES\(\_\)CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Mar Geod 35(1):3–19. doi:10.1080/01490419.2012.718231
Schwatke C, Bosch W, Savcenko R, Dettmering D (2010) OpenADB—an open database for multi-mission altimetry. EGU, Vienna, Austria, 2010-05-05
Shako R, Förste C, Abrykosov O, Bruinsma S, Marty JC, Lemoine JM, Flechtner F, Neumayer K, Dahle C (2014) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner F, Sneeuw N, Schuh WD (eds.) Observation of the system Earth from space—CHAMP, GRACE, GOCE and future missions, (GEOTECHNOLOGIEN Science Report; No. 20; Advanced Technologies in Earth Sciences). Springer, Berlin, pp 155–161. doi:10.1007/978-3-642-32135-1_20, print ISBN:978-3-642-32134-4, online ISBN:978-3-642-32135-1
Sideris MG, Rangelova E, Amjadiparvar B (2014) First results on height system unification in North America using GOCE. In: Marti U (ed) Gravity, geoid and height systems. IAG symposia series, vol 141, pp 221–227. doi:10.1007/978-3-319-10837-7_28
Sjöberg LE (2011) On the definition and realization of a global vertical datum. J Geod Sci 1(3):154–157. doi:10.2478/v10156-010-0018-z
Stammer D, Tokmakian R, Semtner A, Wunsch C (1996) How closely does a 1/4\(^{\circ }\) degree global circulation model simulate large scale observations? J Geophys Res 101:25779–25812
Tapley BD, Chambers DP, Bettadpur S, Ries JC (2003) Large scale circulation from the GRACE GGM01 Geoid. Geophys Res Lett 30(22):2163. doi:10.1029/2003GL018622
Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole, S (2007) The GGM03 mean Earth gravity model from GRACE. Eos Trans, AGU 88(52), Fall Meet. Suppl., Abstract G42A-03
Tapley BD, Flechtner F, Bettadpur S, Watkins MM (2013a) The status and future prospect for GRACE after the first decade. Eos Trans., Fall Meet. Suppl., Abstract G22A-01
Tapley et al. (2013b) GGM05S model. siehe http://icgem.gfz-potsdam.de/ICGEM/documents/README_GGM05S.pdf
Tscherning CC (ed) (1984) The Geodesist’s handbook, resolutions of the International Association of Geodesy adopted at the XVIII General Assembly of the International Union of Geodesy and Geophysics, Hamburg 1983. Bull Géod 58:3
Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F (2013) Generic mapping tools: improved version released. Eos Trans AGU 94:409–410
Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic inverted barometer effect. Rev Geophys 35(1):79–107
Acknowledgments
The support provided by Wolfgang Bosch and Roman Savcenko at DGFI-TUM in the computation of the yearly mean sea surface models is highly appreciated. In the same way, the insightful comments and recommendations provided by the reviewers and the editors are gratefully acknowledged. The contribution of the coauthors from the Slovak University of Technology in Bratislava has been supported by the Grants APVV-0072-11 and VEGA 1/0714/15.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sánchez, L., Čunderlík, R., Dayoub, N. et al. A conventional value for the geoid reference potential \(W_{0}\) . J Geod 90, 815–835 (2016). https://doi.org/10.1007/s00190-016-0913-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00190-016-0913-x