Skip to main content
Log in

Potentialities of multifrequency ionospheric correction in Global Navigation Satellite Systems

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The first-order ionospheric error is reduced in the dual-frequency Global Navigation Satellite Systems (GNSS). In this paper, the possibility of eliminating ionospheric higher-order errors in the multifrequency GNSS is explored. Since the second-order error associated with the geomagnetic field effect on the refractive index can be eliminated in dual-frequency measurements, we explore the possibility of eliminating third-order errors in triple-frequency GNSS in view of phase scintillations. A connection between the possibility of improving the multifrequency GNSS accuracy and diffraction effects in radio signal propagation through the randomly inhomogeneous ionosphere is shown. The numerical simulation has revealed that the systematic, residual ionospheric error is considerably reduced when we pass on from dual-frequency to triple-frequency measurements. The change in the residual error variance during such a transition depends however on the relationship between the inner scale of the turbulent spectrum of ionospheric irregularities and the Fresnel radius. Given the inner scale larger than the Fresnel radius, not only the systematic error, but also the standard deviation reduces when we pass on from dual-frequency to triple-frequency measurements. Otherwise, when the Fresnel radius exceeds the inner scale, the variance increases with increasing number of frequencies in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GNSS:

Global Navigation Satellite Systems

GO:

Geometrical optics

References

  • Aarons J (1982) Global morphology of ionospheric scintillations. Proc IEEE 70: 360–378

    Article  Google Scholar 

  • Akasofu S, Chapman S (1972) Solar-terrestrial physics. Clarendon Press, Oxford

    Google Scholar 

  • Bassiri S (1990) Three-frequency ranging systems and their applications to ionospheric delay calibration. TDA Progress Report 42–103, pp 14–20

  • Bassiri S, Hajj GA (1992) Modeling the global positioning system signal propagation through the ionosphere. TDA Progress Report 42-110:92-103

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscr Geod 18: 280–289

    Google Scholar 

  • Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscr Geod 16: 205–214

    Google Scholar 

  • Budden KG (1985) The propagation of radio waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Datta-Barua S, Walter T, Blanch J, Enge P (2008) Bounding higher-order ionosphere errors for the dual-frequency GPS user. Radio Sci 43: RS5010. doi:10.1029/2007RS003772

    Article  Google Scholar 

  • Dai L, Wang J, Rizos C, Han S (2003) Predicting atmospheric biases for real-time ambiguity resolution in GPS/GLONASS reference station networks. J Geod 76: 617–628

    Article  Google Scholar 

  • Davies K (1969) Ionospheric radio waves. Blaisdel Publishing Company, London

    Google Scholar 

  • de Jong K (1999) A modular approach to precise GPS positioning. GPS Solut 2: 52–56

    Article  Google Scholar 

  • Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geod 75: 633–640

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311. doi:10.1029/2005GL024342

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82: 389–399

    Article  Google Scholar 

  • Gherm VE, Zernov NN, Strangeways HJ (2005) Propagation model for transionospheric fluctuating paths of propagation: simulator of the transionospheric channel. Radio Sci 40: RS1003. doi:10.1029/2004RS003097

    Article  Google Scholar 

  • Gherm V, Novitsky R, Zernov N, Strangeways HJ, Ioannides RT (2006) On the limiting accuracy of range measurements for the three frequency mode of operation of a satellite navigation system. 2nd Workshop radio systems and ionospheric effects. Rennes, 3–7 October 2006, Paper 11

  • Grejner-Brzezinska DA, Da R, Toth C (1998) GPS error modeling and OTF ambiguity resolution for high-accuracy GPS/INS integrated system. J Geod 72: 626–638

    Article  Google Scholar 

  • Grewal MS, Weill LR, Andrews AP (2007) Global positioning systems, inertial navigation, and integration. Wiley, New York

    Book  Google Scholar 

  • Gu M, Brunner FK (1990) Theory of the two frequency dispersive range correction. Manuscr Geod 15: 357–361

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orús R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112: B08417. doi:10.1029/2006JB004707

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2006) Higher order ionospheric effects in precise GNSS positioning. J Geod 81: 259–268. doi:10.1007/s00190-006-0106-0

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2008a) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Solut 12: 87–97. doi:10.1007/s10291-007-0069-5

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2008b) Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43: RS5008. doi:10.1029/2007RS003817

    Article  Google Scholar 

  • IERS Conventions (2009) Chapter 9, pp 14–15. ftp://tai.bipm.org/iers/convupdt/chapter9/icc9.pdf

  • Ishimaru A (1978) Wave propagation and scattering in random media. Multiple scattering, turbulence, rough surfaces and remote sensing, vol 2. Academic Press, New York

    Google Scholar 

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30: 1829. doi:10.1029/2003GL017639

    Article  Google Scholar 

  • Kim BC, Tinin MV (2006) The influence of different-scale ionospheric irregularities on the residual error of the satellite navigation system. In: 7th International symposium on antennas, propagation and EM theory proceedings, vol I, 26–29 October 2006, Guilin, China, pp 433–436

  • Kim BC, Tinin MV (2007a) Contribution of ionospheric irregularities to the error of dual-frequency GNSS positioning. J Geod 81: 189–199. doi:10.1007/s00190-006-0099-8

    Article  Google Scholar 

  • Kim BC, Tinin MV (2007b) Effect of ionospheric irregularities on accuracy of dual-frequency GPS Systems. Geomag Aeron 47: 238– 243

    Article  Google Scholar 

  • Kim BC, Tinin MV (2009a) The second-order Rytov approximation and residual error in dual-frequency satellite navigation systems. Waves Random Complex 19: 284–304. doi:10.1080/17455030802460080

    Article  Google Scholar 

  • Kim BC, Tinin MV (2009b) association of the residual error of dual-frequency Global Navigation Satellite Systems with ionospheric turbulence parameters. J Atmos Solar Terr Phys 71: 1967–1973

    Article  Google Scholar 

  • Kim BC, Kolesnik SN, Tinin MV (2005) Ionospheric random inhomogeneities and second order correction of GPS data. XXVIII URSI General Assembly, New Delhi, India, October 2005, GF1b.8

  • Klobuchar JA, Kunches JM (2003) Comparative range delay and variability of the Earth’s troposphere and ionosphere. GPS Solut 7: 55–58

    Google Scholar 

  • Kravtsov YuA, Orlov YuI (1990) Geometrical optics of inhomogeneous media. Springer, New York

    Google Scholar 

  • Kunches JM, Klobuchar JA (2001) Eye on the ionosphere: GPS after SA. GPS Solut 4: 52–54

    Article  Google Scholar 

  • Liu J, Cannon ME, Alves P, Petovello MG, Lachapelle G, MacGougan G, deGroot L (2003) A performance comparison of single and dual frequency GPS ambiguity resolution strategies. GPS Solut 7: 87–100

    Article  Google Scholar 

  • Morton YT, Zhou Q, Graas F (2009) Assessment of second-order ionosphere error in GPS range observables using Arecibo incoherent scatter radar measurements. Radio Sci 44: RS1002. doi:10.1029/2008RS003888

    Article  Google Scholar 

  • Munekane H (2005) A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning. Geophys J Int 163: 10–17

    Article  Google Scholar 

  • Olynik M, Petrovello MG, Cannjn ME, Lachapelle G (2002) Temporal impact of selected GPS errors on point positioning. GPS Solut 6: 47–57

    Article  Google Scholar 

  • Palamartchouk K (2010) Apparent geocenter oscillations in Global Navigation Satellite Systems solutions caused by the ionospheric effect of second order. J Geophys Res 115: B03415. doi:10.1029/2008JB006099

    Article  Google Scholar 

  • Petrie EJ, King MA, Moore P, Lavallée DA (2010) Higher-order ionospheric effects on the GPS reference frame and velocities. J Geophys Res 115: B03417. doi:10.1029/2009JB006677

    Article  Google Scholar 

  • Pireaux S, Defraigne P, Wauters L, Bergeot N, Baire Q, Bruyninx C (2010) Higher-order ionospheric effects in GPS time and frequency transfer. GPS Solut. doi:10.1007/s10291-009-0152-1

  • Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS, GALILEO, and augmentation systems. Artech House, London

    Google Scholar 

  • Rytov SM, Kravtsov YuA, Tatarskii VI (1989) Introduction to statistical radiophysics, vol. 4, wave propagation through random media. Springer, New York

    Google Scholar 

  • Syndergaard S (2002) A new algorithm for retrieving GPS radio occultation total electron content. Geophys Res Lett. doi:10.1029/2001GL014478

  • Tatarskii VI (1971) The effect of a turbulent atmosphere on wave propagation. National Technical Information Service, Springfield, VA

  • Teunissen PJG (2003) Theory of integer equivalent estimation with application to GNSS. J Geod 77: 402–410

    Article  Google Scholar 

  • Tinin MV, Kim BC, Kolesnik SN, Kravstov YA (2004) Inhomogeneous structure of the ionospheric plasma and accuracy of the satellite navigation system. In: Proceedings of ISAP’04, Sendai, Japan, pp 1105–1108

  • Thölert S, Erker S, Langley R, Montenbruck O, Meurer M, Temple MA, Hauschild A (2009) Innovation: L5 signal first light. GPS World, June 1

  • Wang Z, Wu Y, Zhang K, Meng Y (2005) Triple-frequency method for high-order ionospheric refractive error modeling in GPS modernization. J Glob Position Syst 4: 291–295

    Article  Google Scholar 

  • Xu G (2007) GPS theory, algorithms and applications, 2nd edn. Springer, New York

    Google Scholar 

  • Yeh KC, Liu CH (1982) Radio-wave scintillations in the ionosphere. Proc IEEE 70: 324–360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tinin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.C., Tinin, M.V. Potentialities of multifrequency ionospheric correction in Global Navigation Satellite Systems. J Geod 85, 159–169 (2011). https://doi.org/10.1007/s00190-010-0425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0425-z

Keywords

Navigation