Skip to main content

Advertisement

Log in

Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We apply global optimization in order to optimize the referencing (and consequently the stability) of the Earth Orientation Parameters (EOP) with respect to ITRF2005. These EOP are derived at a daily sampling from SLR data, simultaneously with weekly station positions. The EOP referencing is carried out with minimum constraints applied weekly to the three rotations and over core station networks. Our approach is based on a multi objective genetic algorithm, a particular stochastic global optimization method, the reference system effects being the objectives to minimize. We thus use rigorous criteria for the optimal weekly core station selection. The results evidence an improvement of 10% of the stability for Polar Motion (PM) series in comparison to the results obtained with the network specially designed for EOP referencing by the Analysis Working Group of the International Laser Ranging Service. This improvement of nearly 25 μas represents 50% of the current precision of the IERS 05 C04 PM reference series. We also test the possibility of averaging the weekly networks provided by our algorithm (the Genetically Modified Networks—GMN) over the whole time period. Although the dynamical nature of the GMN is clearly a key point of their success, we can derive such a global mean core network, which could be useful for practical applications regarding EOP referencing. Using this latter core network moreover provides more stable EOP series than the conventional network does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Boucher C, Sillard P (2002) New trends for the realization of the International Terrestrial Reference System. Adv Space Res 30(2): 175–184

    Article  Google Scholar 

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10): 2214. doi:10.1029/2001JB000561

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112: B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Altamimi Z, Gambis D, Bizouard C (2008) Rigorous combination to ensure ITRF and EOP consistency. In: Capitaine N (ed) Proceedings of the journées 2007: systèmes de référence spatio-temporels: the celestial reference frame for the future, Observatoire de Paris, pp 151–154

  • Baarda W (1973) S-transformations and criterion matrices, vol 5(1), Geodetic New Series. Netherlands Geodetic Commission Publications, Delft

  • Baselga S, García-Asenjo L (2008) GNSS differential positioning by robust estimation. J Surv Eng 134(1): 21–25

    Article  Google Scholar 

  • Berné JL, Baselga S (2004) First-order design of geodetic networks using the simulated annealing method. J Geod 78: 47–54. doi:10.1007/s00190-003-0365-y

    Article  Google Scholar 

  • Bizouard C, Gambis D (2009) The combined solution C04 for Earth Orientation Parameters consistent with the International Reference Frame 2005. In: Proceedings of the IAG symposium GRF2006: geodetic reference frames, IAG Springer Series

  • Bjerhammar A (1973) Theory of errors and generalized matrix inverses. Elsevier, Amsterdam

    Google Scholar 

  • Blaha G (1971) Inner adjustment constraints with emphasis on range observations. Technical Report 48, Department of Geodetic Science, The Ohio State University, Columbus

  • Blaha G (1982) Free networks: minimum norm solution as obtained by the inner adjustment constraint method. Bull Geod 56: 209–219

    Article  Google Scholar 

  • Coello Coello CA (2000) Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of the 2000 congress on evolutionary computation (CEC’2000), vol 1. IEEE Press, pp 30–37

  • Coello Coello CA et al (2005) Recent trends in evolutionary multiobjective optimization. In: Abraham A (eds) Evolutionary multi-objective optimization: theoretical advances and applications, advanced information and knowledge processing ser. Springer, London, pp 7–32

    Google Scholar 

  • Coello Coello CA (2006) Twenty years of evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell Mag 1(1): 28–36

    Article  Google Scholar 

  • Coulot D, Berio P, Biancale R, Loyer S, Soudarin L, Gontier AM (2007) Toward a direct combination of space-geodetic techniques at the measurement level: methodology and main issues. J Geophys Res 112: B05410. doi:10.1029/2006JB004336

    Article  Google Scholar 

  • Cvetković D, Coello Coello CA (2004) Human preferences and their applications in evolutionary multi-objective optimization. In: Yaochu J (eds) Knowledge incorporation in evolutionary computation. Springer, Berlin, pp 479–503

    Google Scholar 

  • Dare P, Saleh H (2000) GPS network design: logistics solution using optimal and near-optimal methods. J Geod 74: 467–478

    Article  Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2): 182–197

    Article  Google Scholar 

  • de Caritat Condorcet MJAN (1785) Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale

  • Dermanis A (1994) Free networks solutions with the Direct Linear Transformation (DLT) method. ISPRS J Photogram Rem Sens 49: 2–12

    Article  Google Scholar 

  • Gambis D (2004) Monitoring earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78: 295–303. doi:10.1007/s00190-004-0394-1

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  • Grafarend EW (1974) Optimization of geodetic networks. Boll Geod Sc Aff 33(4): 351–406

    Google Scholar 

  • Grafarend EW, Schaffrin B (1974) Unbiased free net adjustment. Surv Rev 22(171): 200–218

    Google Scholar 

  • Grafarend EW, Schaffrin B (1976) Equivalence of estimable quantitiess and invariants in geodetic networks. Z Vermess 101: 485–491

    Google Scholar 

  • Knowles J, Corne D et al (2004) Memetic algorithms for multiobjective optimization: issues, methods, and prospects. In: Krasnogor N (eds) Recent advances in memetic algorithms. Springer, Berlin, pp 313–352

    Google Scholar 

  • Koch KR (1987) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Google Scholar 

  • Konak A, Coit DW, Smith AE (2006) Multi-Objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91: 992–1007

    Article  Google Scholar 

  • Leguizamón G, Michalewicz Z (1999) A new version of ant system for subset problems. In: Angeline PJ et al (eds) Proceedings of the 1999 congress on evolutionary computation (CEC’99), IEEE Press, pp 1459–1464

  • Meissel P (1965) Über die innere Genauigkeit dreidimensionaler Punkthaufens. Z Vermess 90: 109–118

    Google Scholar 

  • Pearlman M, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 135–143

    Article  Google Scholar 

  • Penrose R (1956) On best approximate solution of linear matrix equations. In: Proceedings of the Cambridge Philosophical Society, vol 52, pp 17–19

  • Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geod 79: 189–195. doi:10.1007/s00190-005-0456-z

    Article  Google Scholar 

  • Saleh HA, Chelouah R (2004) The design of the global navigation satellite system surveying networks using genetic algorithms. Eng Appl Artif Intell 17: 111–122. doi:10.1016/j.engappai.2003.11.001

    Article  Google Scholar 

  • Schaffrin B (1985) Aspects of network design. In: Grafarend EW, Sansò F (eds) Optimization and design of geodetic networks. Springer, Berlin

    Google Scholar 

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75: 63–73

    Article  Google Scholar 

  • Ulrich T, Brockhoff D, Zitzler E (2008) Pattern identification in Pareto-set Approximations. In: Kejzer M et al (eds) Proceedings of the 2008 genetic and evolutionary computation conference (GECCO-2008), ACM, pp 737–744

  • Vergidis T, Vergidis K, Tiwari A (2008) The evaluation line: a posteriori preference articulation approach. In: Proceedings of the 2008 conference on evolutionary computation (CEC 2008), IEEE Press, pp 2694–2700. doi:10.1109/CEC.2008.4631160

  • Zhu SY, Mueller II (1983) Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame. Bull Geod 57: 29–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Coulot.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulot, D., Pollet, A., Collilieux, X. et al. Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF. J Geod 84, 31–50 (2010). https://doi.org/10.1007/s00190-009-0342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-009-0342-1

Keywords

Navigation