Skip to main content
Log in

A proposal of models for thermal compensation in machine tools based on a formulation for in-series heat transfer

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machine tools need to possess excellent positioning accuracy to meet increasingly stringent dimensional tolerances and geometric specifications for producing parts. The accuracy is significantly affected by distortions caused by irregular thermal distribution throughout the machine’s structure, with the motorized spindle being a major source of heat. In this study, through finite element analysis, the influence of the spindle’s heating on other machine components is examined, revealing that the air inside the protection cover acts as one of the main mediums for heat transfer from the spindle to other components far from the spindle. A thermal error compensation model is proposed, considering the in-series heat transfer through the air inside the protection cover, leading to a higher-order thermal expansion curve. Additionally, the thermal errors caused by ball screws are addressed using a first-order exponential model. Testing the two models on a CNC turning center shows a considerable reduction in radial thermal error when combined with inputs from the CNC and temperature sensors strategically placed on the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bryan J (1990) International status of thermal error research (1990). CIRP Annals - Manufacturing Technology 39(2):645–656

    Article  Google Scholar 

  2. Mori M, Mizuguchi H, Fujishima M, Ido Y, Mingkai N (2009) Konishi K Design optimization and development of CNC lathe headstock to minimize thermal deformation. CIRP Annals 58(1):331–334. https://doi.org/10.1016/j.cirp.2009.03.033

    Article  Google Scholar 

  3. Weng L, Gao W, Zhang D, Huang T, Liu T, Li W, Zheng Y, Shi K (2021) Chang W Analytical modelling method for thermal balancing design of machine tool structural components. Int J Mach Tools Manuf 164:103715. https://doi.org/10.1016/j.ijmachtools.2021.103715

    Article  Google Scholar 

  4. Möhring H-C, Brecher C, Abele E, Fleischer J (2015) Bleicher F Materials in machine tool structures. CIRP Annals 64(2):725–748. https://doi.org/10.1016/j.cirp.2015.05.005

    Article  Google Scholar 

  5. Ge Z (2018) Ding X Design of thermal error control system for high-speed motorized spindle based on thermal contraction of CFRP. Int J Mach Tools Manuf 125:99–111. https://doi.org/10.1016/j.ijmachtools.2017.11.002

    Article  Google Scholar 

  6. Fujishima M, Narimatsu K, Irino N (2018) Ido Y Thermal displacement reduction and compensation of a turning center. CIRP J Manuf Sci Technol 22:111–115. https://doi.org/10.1016/j.cirpj.2018.04.003

    Article  Google Scholar 

  7. Grama SN (2017) Mathur A, Aralaguppi R, Subramanian T Optimization of high speed machine tool spindle to minimize thermal distortion. Procedia CIRP 58:457–462. https://doi.org/10.1016/j.procir.2017.03.253 16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO)

  8. Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T (2012) Wegener K Thermal issues in machine tools. CIRP Annals 61(2):771–791. https://doi.org/10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  9. Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127. https://doi.org/10.1016/j.precisioneng.2011.07.013

    Article  Google Scholar 

  10. Li G, Ke H, Li C, Li B (2019) Thermal error modeling of feed axis in machine tools using particle swarm optimization-based generalized regression neural network. J Comput Inf Sci Eng 20(2):021003. https://doi.org/10.1115/1.4045292

    Article  Google Scholar 

  11. Mayr J, Blaser P, Ryser A (2018) Hernandez-Becerro P An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates. CIRP Annals 67(1):551–554. https://doi.org/10.1016/j.cirp.2018.04.001

    Article  Google Scholar 

  12. Mareš M, Horejš O (2020) Havlík L Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated python code validated with a machined test piece. Precis Eng 66:21–30. https://doi.org/10.1016/j.precisioneng.2020.06.010

    Article  Google Scholar 

  13. Chen Y, Chen J (2021) Xu G A data-driven model for thermal error prediction considering thermoelasticity with gated recurrent unit attention. Measurement 184:109891. https://doi.org/10.1016/j.measurement.2021.109891

    Article  Google Scholar 

  14. Galant A, Großmann K, Mühl A (2015) In: Großmann K. (ed.) Thermo-elastic simulation of entire machine tool, pp 69–84. Springer, Cham. https://doi.org/10.1007/978-3-319-12625-8_7

  15. Liu K, Liu H, Li T, Wang Y, Sun M, Wu Y (2017) Prediction of comprehensive thermal error of a preloaded ball screw on a gantry milling machine. J Manuf Sci Eng 140(2):021004. https://doi.org/10.1115/1.4037236

  16. Gebhardt M, Ess M, Weikert S, Knapp W (2013) Wegener K Phenomenological compensation of thermally caused position and orientation errors of rotary axes. J Manuf Process 15(4):452–459. https://doi.org/10.1016/j.jmapro.2013.05.007

    Article  Google Scholar 

  17. Zhang C, Gao F (2017) Yan L Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature. Precis Eng 47:231–238. https://doi.org/10.1016/j.precisioneng.2016.08.008

    Article  Google Scholar 

  18. Kaulagi MN, Sonawane HA (2022) Thermal network-based compensation model for a vertical machining center subjected to ambient temperature fluctuations. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08241-6

  19. Altintas Y, Brecher C, Weck M (2005) Witt S Virtual machine tool. CIRP Annals 54(2):115–138. https://doi.org/10.1016/S0007-8506(07)60022-5

    Article  Google Scholar 

  20. Brecher C, Fey M, Tenbrock C, Daniels M (2015) Multi-point constraints for modeling of machine tool dynamics. J Manuf Sci Eng 138. https://doi.org/10.1115/1.4031771

  21. Mian NS (2013) Fletcher S, Longstaff AP, Myers A Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng 37(2):372–379. https://doi.org/10.1016/j.precisioneng.2012.10.006

    Article  Google Scholar 

  22. Tan F, Yin Q, Dong G, Xie L (2017) Yin G An optimal convective heat transfer coefficient calculation method in thermal analysis of spindle system. Int J Adv Manuf Technol 91(5):2549–2560. https://doi.org/10.1007/s00170-016-9924-2

    Article  Google Scholar 

  23. Harris TA (2001) Rolling Bearing Analysis; 4th Ed. Wiley, New York, NY. The book can be consulted by contacting: EN-ACE-SU: Kemppinen, Juha Mikko Kalervo. http://cds.cern.ch/record/2196766

  24. Mikić BB (1974) Thermal contact conductance; theoretical considerations. Int J Heat Mass Transfer 17(2):205–214. https://doi.org/10.1016/0017-9310(74)90082-9

    Article  Google Scholar 

  25. Neugebauer R, Ihlenfeldt S, Zwingenberger C, Glänzel J, Richter C (2015) In: Großmann K (ed.) Modelling of thermal interactions between environment and machine tool, pp 111–124. Springer, Cham. https://doi.org/10.1007/978-3-319-12625-8_10

  26. Ihlenfeldt S, Schroeder S, Penter L, Hellmich A, Kauschinger B (2020) Adjustment of uncertain model parameters to improve the prediction of the thermal behavior of machine tools. CIRP Annals 69(1):329–332. https://doi.org/10.1016/j.cirp.2020.04.056

    Article  Google Scholar 

  27. Miao E, Liu Y, Liu H, Gao Z (2015) Li W Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tools Manuf 97:50–59. https://doi.org/10.1016/j.ijmachtools.2015.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ABZ and RTC. The first draft of the manuscript was written by ABZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexandre B. Zoppellari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoppellari, A.B., Coelho, R.T. A proposal of models for thermal compensation in machine tools based on a formulation for in-series heat transfer. Int J Adv Manuf Technol 130, 2635–2647 (2024). https://doi.org/10.1007/s00170-023-12810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12810-2

Keywords

Navigation