Skip to main content
Log in

Enhancing the ductile machinability of single-crystal silicon by laser-assisted diamond cutting

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser-assisted diamond cutting is a promising method for the cost-effective machining of hard and brittle materials. A deep knowledge of the material removal mechanism and the attainable surface integrity is crucial to the development of this new technique. This paper focuses on the application of laser-assisted diamond cutting to single-crystal silicon to investigate key characteristics of the process. These characteristics are the critical depth of cut for ductile–brittle transition, machined surface roughness, resultant micro-cutting force, friction coefficient, temperature distribution, microstructure change, and the subsurface damage of the machined silicon. Laser-assisted diamond cutting method is compared with the conventional single-point diamond cutting method. The experimental results reveal that laser-assisted diamond cutting can enhance the silicon’s ductility and machinability by decreasing the softened material’s hardness and promoting the atomic activity in the subsurface layer. The critical depth of cut has been increased by up to 364% with laser assistance, and its degree generally increases with the increase of temperature. The friction coefficient has been decreased by up to 27.95%. The cross-sectional transmission electron microscope observation results indicate that laser-assisted diamond cutting is able to effectively inhibit the formation of the distorted layer and produce less subsurface damage of single-crystal silicon. In comparison to the conventional single-point diamond turning of single-crystal silicon, a significant improvement of surface quality has been obtained by laser-assisted diamond cutting: Sz has been reduced by 87%, and Sa has been reduced by 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. Jumare AI, Abou-El-Hossein K, Abdulkadir LN (2017) Review of ultra-high precision diamond turning of silicon for infrared optics. Int J 73(11)

  2. Zhang SJ, To S, Wang SJ et al (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95

    Article  Google Scholar 

  3. Antwi EK, Liu K, Wang H (2018) A review on ductile mode cutting of brittle materials. Front Mech Eng 13(2):251–263

    Article  Google Scholar 

  4. Arif M, Rahman M, San WY (2012) A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int J Adv Manuf Technol 63(5–8):481–504

    Article  Google Scholar 

  5. Fang FZ, Zhang XD, Weckenmann A et al (2013) Manufacturing and measurement of freeform optics. CIRP Ann 62(2):823–846

    Article  Google Scholar 

  6. Vandeperre LJ, Giuliani F, Lloyd SJ et al (2007) The hardness of silicon and germanium. Acta Mater 55(18):6307–6315

    Article  Google Scholar 

  7. Ebrahimi F, Kalwani L (1999) Fracture anisotropy in silicon single crystal. Mater Sci Eng A 268(1–2):116–126

    Article  Google Scholar 

  8. Li XP, He T, Rahman M (2005) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 259(7–12):1207–1214

    Article  Google Scholar 

  9. Abdulkadir LN, Abou-El-Hossein K, Jumare AI et al (2018) Ultra-precision diamond turning of optical silicon-a review. Int J Adv Manuf Technol 1–36

  10. Nakasuji T, Kodera S, Hara S et al (1990) Diamond turning of brittle materials for optical components. CIRP Ann 39(1):89–92

    Article  Google Scholar 

  11. Fang FZ, Chen LJ (2000) Ultra-precision cutting for ZKN7 glass. CIRP Ann 49(1):17–20

    Article  Google Scholar 

  12. Yan J, Asami T, Harada H, et al. Crystallographic effect on subsurface damage formation in silicon microcutting[J]. CIRP Annals - Manufacturing Technology, 2012, 61(1):0–0.

  13. O’Connor BP, Marsh ER, Couey JA (2005) On the effect of crystallographic orientation on ductile material removal in silicon. Precis Eng 29(1):124–132

    Article  Google Scholar 

  14. Liu K, Li XP, Rahman M et al (2007) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol 32(7–8):631

    Article  Google Scholar 

  15. Fang FZ, Wu H, Zhou W et al (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184(1–3):407–410

    Article  Google Scholar 

  16. Jasinevicius RG, Duduch JG, Montanari L et al (2012) Dependence of brittle-to-ductile transition on crystallographic direction in diamond turning of single-crystal silicon. Proc Inst Mech Eng B J Eng Manuf 226(3):445–458

    Article  Google Scholar 

  17. Wang M, Wang W, Lu ZS (2013) Critical cutting thickness in ultra-precision machining of single crystal silicon. Int J Adv Manuf Technol 65(5–8):852–851

    Google Scholar 

  18. Arif M, Xinquan Z, Rahman M et al (2013) A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials. Int J Mach Tools Manuf 64:114–122

    Article  Google Scholar 

  19. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45(15):1681–1686

    Article  Google Scholar 

  20. Yan J, Syoji K, Tamaki J (2003) Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255(7–12):1380–1387

    Article  Google Scholar 

  21. Yan J, Asami T, Kuriyagawa T (2008) Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy. Precis Eng 32(3):186–195

    Article  Google Scholar 

  22. Yan J, Asami T, Harada H et al (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33(4):378–386

    Article  Google Scholar 

  23. Kumar M, Melkote S, Lahoti G (2011) Laser-assisted microgrinding of ceramics. CIRP Ann Manuf Technol 60(1):367–370

    Article  Google Scholar 

  24. Ding H, Shen N, Shin YC (2012) Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J Mater Process Technol 212(3):601–613

    Article  Google Scholar 

  25. Ding H, Shin YC (2010) Laser-assisted machining of hardened steel parts with surface integrity analysis. Int J Mach Tools Manuf 50(1):106–114

    Article  Google Scholar 

  26. Tian Y, Wu B, Anderson M et al (2008) Laser-assisted milling of silicon nitride ceramics and inconel 718. J Manuf Sci Eng 130(3):361–374

    Article  Google Scholar 

  27. Rashid RAR, Sun S, Wang G et al (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69

    Article  Google Scholar 

  28. Shayan AR, Poyraz HB, Ravindra D et al (2009) Force analysis, mechanical energy and laser heating evaluation of scratch tests on silicon carbide (4H-SiC) in micro-laser assisted machining (µ-LAM) process[C]//ASME 2009 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 827-832

  29. Mohammadi H, Poyraz HÁBÁ, Ravindra D et al (2015) Surface finish improvement of an unpolished silicon wafer using micro-laser assisted machining. Int J Abras Technol 7(2):107–121

    Article  Google Scholar 

  30. Mohammadi H, Ravindra D, Kode SK et al (2015) Experimental work on micro laser-assisted diamond turning of silicon (111). J Manuf Process 19:125–128

    Article  Google Scholar 

  31. Shahinian H, Navare J, Zaytsev D et al (2019) Microlaser assisted diamond turning of precision silicon optics. Opt Eng 58(9):092607

    Article  Google Scholar 

  32. Ravindra D, Ghantasala MK, Patten J (2012) Ductile mode material removal and high-pressure phase transformation in silicon during micro-laser assisted machining. Precis Eng 36(2):364–367

    Article  Google Scholar 

  33. Langan SMC, Ravindra D, Mann AB (2018) Process parameter effects on residual stress and phase purity after micro laser-assisted machining of silicon. Mater Manuf Processes 33(14):1578–1586

    Article  Google Scholar 

  34. Green MA, Keevers MJ (1995) Optical properties of intrinsic silicon at 300 K. Prog Photovoltaics Res Appl 3(3):189–192

    Article  Google Scholar 

  35. Coe SE, Sussmann RS (2000) Optical, thermal and mechanical properties of CVD diamond. Diam Relat Mater 9(9–10):1726–1729

    Article  Google Scholar 

  36. Liu K, Zuo D, Li XP et al (2009) Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools. J Vacuum Sci Technol B 27(3):1361–1366

    Article  Google Scholar 

  37. Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys Rev 134(4A):A1058

    Article  Google Scholar 

  38. Xiao Y, Motooka T, Teranishi R et al (2013) Nucleation of Si and Ge by rapid cooling using molecular-dynamics simulation. J Cryst Growth 362:103–105

    Article  Google Scholar 

  39. Domnich V, Aratyn Y, Kriven WM et al (2008) Temperature dependence of silicon hardness: experimental evidence of phase transformations. Rev Adv Mater Sci 17(1–2):33–41

    Google Scholar 

  40. Gilman JJ (1975) Flow of covalent solids at low temperatures. J Appl Phys 46(12):5110–5113

    Article  Google Scholar 

  41. Suzuki T, Ohmura T (1996) Ultra-microindentation of silicon at elevated temperatures. Philos Mag A 74(5):1073–1084

    Article  Google Scholar 

  42. Trefilov VI, Mil'Man YV (1964) Aspects of the plastic deformation of crystals with covalent bonds[C]//Soviet Physics Doklady 8:1240

  43. Wang Z, Chen J, Wang G et al (2017) Anisotropy of single-crystal silicon in nanometric cutting. Nanoscale Res Lett 12(1):300

    Article  Google Scholar 

  44. Chavoshi SZ, Goel S, Luo X (2015) Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting. Model Simul Mater Sci Eng 24(1):015002

    Article  Google Scholar 

  45. Chen X, Liu C, Ke J, Zhang J, Shu X, Xu J (2020) Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon. Mater Des 190:108524

    Article  Google Scholar 

  46. Lucazeau G, Abello L (1997) Micro-Raman analysis of residual stresses and phase transformations in crystalline silicon under microindentation. J Mater Res 12(09):2262–2273

    Article  Google Scholar 

  47. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  MATH  Google Scholar 

  48. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015012

    Article  MathSciNet  Google Scholar 

  49. Goel S, Luo X, Agrawal A et al (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tools Manuf 88:131–164

    Article  Google Scholar 

  50. Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71(3):035211

    Article  Google Scholar 

  51. Goel S, Kovalchenko A, Stukowski A, Cross G (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478

    Article  Google Scholar 

  52. Guo X, Li Q, Liu T, Zhai C, Kang R, Jin Z (2016) Molecular dynamics study on the thickness of damage layer in multiple grinding of monocrystalline silicon. Mater Sci Semicond Process 51:15–19

    Article  Google Scholar 

Download references

Funding

Xiao Chen acknowledges the support of the National Natural Science Foundation of China (grant no. 51905195) and China Postdoctoral Science Foundation (grant no. 2017M612447). Jianguo Zhang is grateful for the National Natural Science Foundation of China (grant no. 51905194).

Author information

Authors and Affiliations

Authors

Contributions

Jinyang Ke: conceptualization, methodology, validation, formal analysis, investigation, writing—original draft, writing—review and editing, and visualization. Xiao Chen: conceptualization, methodology, formal analysis, investigation, and writing—review and editing. Changlin Liu: methodology, validation, writing—review and editing, and visualization. Jianguo Zhang: conceptualization, methodology, and writing—review and editing. Hui Yang: methodology, and writing—review and editing. Jianfeng Xu: conceptualization, investigation, resources, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Jianfeng Xu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, J., Chen, X., Liu, C. et al. Enhancing the ductile machinability of single-crystal silicon by laser-assisted diamond cutting. Int J Adv Manuf Technol 118, 3265–3282 (2022). https://doi.org/10.1007/s00170-021-08132-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08132-w

Keywords

Navigation