Skip to main content

Advertisement

Log in

Grinding comparative analysis between different proportions of water-oil applied to MQL technique and industrial production cost towards a green manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The high temperatures involved in the grinding process require an efficient lubri-refrigeration method. Currently, the conventional method (flood) is the most used in industries. However, this method comes up against environmental damage and the health of operators, due to high amounts of fluid injected into the cutting region. Therefore, the use of the minimum quantity lubricant (MQL) technique with a wheel cleaning jet (WCJ) proves to be a viable alternative. This work makes a comparative analysis of the MQL + WCJ system with a conventional method. In this sense, the experiments grinding the AISI 4340 steel with an aluminum oxide wheel. The lubrication and cooling of the process were done by the conventional method, pure MQL, and diluted MQL (oil-water 1:1, 1:3, 1:5) with and without cleaning (WCJ). The output parameters evaluated were surface roughness (Ra), roundness error, G-ratio, tangential cutting force, specific energy, microstructure, and cost. The surface roughness shows an increase of only 18%, with the use of the MQL technique diluted 1:5 + WCJ compared to the conventional method. Also, the implementation of the MQL technique is cheaper than the conventional method. The results show that the addition of water in MQL favors grinding, and the efficiency of MQL increases when associated with WCJ for all parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ribeiro FSF, Lopes JC, Garcia MV, de Angelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding performance by applying MQL technique: an approach of the wheel cleaning jet compared with wheel cleaning Teflon and alumina block. Int J Adv Manuf Technol 107:4415–4426. https://doi.org/10.1007/s00170-020-05334-6

    Article  Google Scholar 

  2. Ribeiro FSF, Lopes JC, Garcia MV, de Angelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding assessment of workpieces with different interrupted geometries using aluminum oxide wheel with vitrified bond. Int J Adv Manuf Technol 108:931–941. https://doi.org/10.1007/s00170-020-05500-w

    Article  Google Scholar 

  3. Ribeiro FSF, Lopes JC, Garcia MV, de Moraes DL, da Silva AE, de Angelo Sanchez LE, de Aguiar PR, Bianchi EC (2020) New knowledge about grinding using MQL simultaneous to cooled air and MQL combined to wheel cleaning jet technique. Int J Adv Manuf Technol 109:905–917. https://doi.org/10.1007/s00170-020-05721-z

    Article  Google Scholar 

  4. Singh H, Sharma VS, Dogra M (2020) Exploration of graphene assisted vegetables oil based minimum quantity lubrication for surface grinding of TI-6AL-4V-ELI. Tribol Int 144:106113. https://doi.org/10.1016/j.triboint.2019.106113

    Article  Google Scholar 

  5. Kapłonek, Nadolny, Sutowska, et al (2019) Experimental studies on MoS2-treated grinding wheel active surface condition after high-efficiency internal cylindrical grinding process of INCONEL® alloy 718. Micromachines 10:255. https://doi.org/10.3390/mi10040255

  6. de Mello HJ, de Mello DR, Rodriguez RL, Lopes JC, da Silva RB, de Angelo Sanchez LE, Hildebrandt RA, Aguiar PR, Bianchi EC (2018) Contribution to cylindrical grinding of interrupted surfaces of hardened steel with medium grit wheel. Int J Adv Manuf Technol 95:4049–4057. https://doi.org/10.1007/s00170-017-1552-y

    Article  Google Scholar 

  7. Nourredine B (2010) A technology enabler for green machining: minimum quantity lubrication (MQL). J Manuf Technol Manag 21:556–566. https://doi.org/10.1108/17410381011046968

    Article  Google Scholar 

  8. Javaroni RL, Lopes JC, Sato BK, Sanchez LEA, Mello HJ, Aguiar PR, Bianchi EC (2019) Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int J Adv Manuf Technol 103:2809–2819. https://doi.org/10.1007/s00170-019-03697-z

    Article  Google Scholar 

  9. Lopes JC, Ventura CEH, de M. Fernandes L, et al (2019) Application of a wheel cleaning system during grinding of alumina with minimum quantity lubrication. Int J Adv Manuf Technol 102:333–341. https://doi.org/10.1007/s00170-018-3174-4

  10. de Martini FL, Lopes JC, Volpato RS et al (2018) Comparative analysis of two CBN grinding wheels performance in nodular cast iron plunge grinding. Int J Adv Manuf Technol 98:237–249. https://doi.org/10.1007/s00170-018-2133-4

    Article  Google Scholar 

  11. de Martini FL, Lopes JC, Ribeiro FSF et al (2019) Thermal model for surface grinding application. Int J Adv Manuf Technol 104:2783–2793. https://doi.org/10.1007/s00170-019-04101-6

    Article  Google Scholar 

  12. Lopes JC, de Martini FL, Domingues BB et al (2019) Effect of CBN grain friability in hardened steel plunge grinding. Int J Adv Manuf Technol 103:1567–1577. https://doi.org/10.1007/s00170-019-03654-w

    Article  Google Scholar 

  13. Rodriguez RL, Lopes JC, Garcia MV, Tarrento GE, Rodrigues AR, de Ângelo Sanchez LE, de Mello HJ, de Aguiar PR, Bianchi EC (2020) Grinding process applied to workpieces with different geometries interrupted using CBN wheel. Int J Adv Manuf Technol 107:1265–1275. https://doi.org/10.1007/s00170-020-05122-2

    Article  Google Scholar 

  14. Alberdi R, Sanchez JA, Pombo I, Ortega N, Izquierdo B, Plaza S, Barrenetxea D (2011) Strategies for optimal use of fluids in grinding. Int J Mach Tools Manuf 51:491–499. https://doi.org/10.1016/j.ijmachtools.2011.02.007

    Article  Google Scholar 

  15. Alexandre FA, Lopes JC, de Martini FL et al (2020) Depth of dressing optimization in CBN wheels of different friabilities using acoustic emission (AE) technique. Int J Adv Manuf Technol 106:5225–5240. https://doi.org/10.1007/s00170-020-04994-8

    Article  Google Scholar 

  16. Moretti GB, de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, Foschini CR, de Mello HJ, Sanchez LEDA, Aguiar PR, Bianchi EC (2020) Grinding behavior of austempered ductile iron: a study about the effect of pure and diluted MQL technique applying different friability wheels. Int J Adv Manuf Technol 108:3661–3673. https://doi.org/10.1007/s00170-020-05577-3

    Article  Google Scholar 

  17. Daniel DM, Ávila BN, Garcia MV, Lopes JC, Ribeiro FSF, de Mello HJ, de Angelo Sanchez LE, Aguiar PR, Bianchi EC (2020) Grinding comparative between ductile iron and austempered ductile iron under CBN wheel combined to abrasive grains with high and low friability. Int J Adv Manuf Technol 109:2679–2690. https://doi.org/10.1007/s00170-020-05787-9

    Article  Google Scholar 

  18. Javaroni RL, Lopes JC, Garcia MV, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding hardened steel using MQL associated with cleaning system and cBN wheel. Int J Adv Manuf Technol 107:2065–2080. https://doi.org/10.1007/s00170-020-05169-1

    Article  Google Scholar 

  19. Lopes JC, de Martini FL, Garcia MV et al (2020) Performance of austempered ductile iron (ADI) grinding using diluted oil in MQL combined with wheel cleaning jet and different CBN grains friability. Int J Adv Manuf Technol 107:1805–1818. https://doi.org/10.1007/s00170-020-05142-y

    Article  Google Scholar 

  20. Lopes JC, Garcia MV, Volpato RS, de Mello HJ, Ribeiro FSF, de Angelo Sanchez LE, de Oliveira Rocha K, Neto LD, Aguiar PR, Bianchi EC (2020) Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. Int J Adv Manuf Technol 106:2205–2218. https://doi.org/10.1007/s00170-019-04760-5

    Article  Google Scholar 

  21. Javaroni RL, Lopes JC, Diniz AE, Garcia MV, Ribeiro FSF, Tavares AB, Talon AG, Sanchez LE A, Mello HJ, Aguiar PR, Bianchi EC (2020) Improvement in the grinding process using the MQL technique with cooled wheel cleaning jet. Tribol Int 152:106512. https://doi.org/10.1016/j.triboint.2020.106512

  22. Pereira O, Rodríguez A, Barreiro J, Fernández-Abia AI, de Lacalle LNL (2017) Nozzle design for combined use of MQL and cryogenic gas in machining. Int J Precis Eng Manuf Technol 4:87–95. https://doi.org/10.1007/s40684-017-0012-3

    Article  Google Scholar 

  23. Sánchez Egea A, Martynenko V, Martínez Krahmer D, López de Lacalle L, Benítez A, Genovese G (2018) On the cutting performance of segmented diamond blades when dry-cutting concrete. Materials (Basel) 11:264. https://doi.org/10.3390/ma11020264

    Article  Google Scholar 

  24. Debnath S, Reddy MM, Yi QS (2016) Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method. Measurement 78:111–119. https://doi.org/10.1016/J.MEASUREMENT.2015.09.011

    Article  Google Scholar 

  25. Shashidhara YM, Jayaram SR (2010) Vegetable oils as a potential cutting fluid—an evolution. Tribol Int 43:1073–1081. https://doi.org/10.1016/j.triboint.2009.12.065

    Article  Google Scholar 

  26. Chetan GS, Venkateswara Rao P (2015) Application of sustainable techniques in metal cutting for enhanced machinability: a review. J Clean Prod 100:17–34. https://doi.org/10.1016/j.jclepro.2015.03.039

    Article  Google Scholar 

  27. Jayal AD, Badurdeen F, Dillon OW, Jawahir IS (2010) Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP J Manuf Sci Technol 2:144–152. https://doi.org/10.1016/j.cirpj.2010.03.006

    Article  Google Scholar 

  28. Talon AG, Lopes JC, Sato BK, Tavares AB, Ribeiro FSF, Genovez MC, Pinto TAD, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding performance of hardened steel: a study about the application of different cutting fluids with corrosion inhibitor. Int J Adv Manuf Technol 108:2741–2754. https://doi.org/10.1007/s00170-020-05598-y

    Article  Google Scholar 

  29. Rodriguez RL, Lopes JC, Garcia MV, Fonteque Ribeiro FS, Diniz AE, Eduardo de Ângelo Sanchez L, José de Mello H, Roberto de Aguiar P, Bianchi EC (2020) Application of hybrid eco-friendly MQL+WCJ technique in AISI 4340 steel grinding for cleaner and greener production. J Clean Prod 124670:124670. https://doi.org/10.1016/j.jclepro.2020.124670

    Article  Google Scholar 

  30. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  31. Talon AG, Lopes JC, Tavares AB, Sato BK, Rodrigues AR, Genovez MC, Dinis Pinto TA, de Mello HJ, Aguiar PR, Bianchi EC (2019) Effect of hardened steel grinding using aluminum oxide wheel under application of cutting fluid with corrosion inhibitors. Int J Adv Manuf Technol 104:1437–1448. https://doi.org/10.1007/s00170-019-04005-5

    Article  Google Scholar 

  32. Ribeiro FSF, Lopes JC, Talon AG, Garcia MV, de Mello HJ, Sanchez LEDA, de Aguiar PR, Bianchi EC (2020) Comparative analysis between resinoid and vitrified bond grinding wheel under interrupted cutting. Int J Adv Manuf Technol 109:75–85. https://doi.org/10.1007/s00170-020-05667-2

    Article  Google Scholar 

  33. Javaroni RL, Lopes JC, Ribeiro FSF, Garcia MV, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2020) Evaluation of a cooled wheel cleaning jet in minimum quantity lubrication grinding process. Int J Adv Manuf Technol 111:1303–1317. https://doi.org/10.1007/s00170-020-06198-6

    Article  Google Scholar 

  34. Boswell B, Islam MN, Davies IJ, Ginting YR, Ong AK (2017) A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int J Adv Manuf Technol 92:321–340. https://doi.org/10.1007/s00170-017-0142-3

    Article  Google Scholar 

  35. Setti D, Sinha MK, Ghosh S, Venkateswara Rao P (2015) Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tools Manuf 88:237–248. https://doi.org/10.1016/j.ijmachtools.2014.10.005

    Article  Google Scholar 

  36. Zhang X, Li C, Zhang Y, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X (2016) Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. Int J Adv Manuf Technol 86:3427–3441. https://doi.org/10.1007/s00170-016-8453-3

    Article  Google Scholar 

  37. Li X, Li Y (2016) Chain-to-chain competition on product sustainability. J Clean Prod 112:2058–2065. https://doi.org/10.1016/j.jclepro.2014.09.027

    Article  Google Scholar 

  38. da Silva AE, Lopes JC, Daniel DM, de Moraes DL, Garcia MV, Ribeiro FSF, de Mello HJ, Sanchez LEDA, Aguiar PR, Bianchi EC (2020) Behavior of austempered ductile iron (ADI) grinding using different MQL dilutions and CBN wheels with low and high friability. Int J Adv Manuf Technol 107:4373–4387. https://doi.org/10.1007/s00170-020-05347-1

    Article  Google Scholar 

  39. Oliveira DDJ, Guermandi LG, Bianchi EC et al (2012) Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. J Mater Process Technol 212:2559–2568. https://doi.org/10.1016/j.jmatprotec.2012.05.019

    Article  Google Scholar 

  40. Mao C, Zou H, Huang X, Zhang J, Zhou Z (2013) The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. Int J Adv Manuf Technol 64:1791–1799. https://doi.org/10.1007/s00170-012-4143-y

    Article  Google Scholar 

  41. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  42. Sato BK, Rodriguez RL, Talon AG, Lopes JC, Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance of AISI D6 steel using CBN wheel vitrified and resinoid bonded. Int J Adv Manuf Technol 105:2167–2182. https://doi.org/10.1007/s00170-019-04407-5

    Article  Google Scholar 

  43. Sato BK, Lopes JC, Diniz AE, Rodrigues AR, de Mello HJ, Sanchez LEA, Aguiar PR, Bianchi EC (2020) Toward sustainable grinding using minimum quantity lubrication technique with diluted oil and simultaneous wheel cleaning. Tribol Int 147:106276. https://doi.org/10.1016/j.triboint.2020.106276

    Article  Google Scholar 

  44. Lopes JC, Garcia MV, Valentim M, Javaroni RL, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet. Int J Adv Manuf Technol 105:4429–4442. https://doi.org/10.1007/s00170-019-04574-5

    Article  Google Scholar 

  45. Rodriguez RL, Lopes JC, Hildebrandt RA, Perez RRV, Diniz AE, de Ângelo Sanchez LE, Rodrigues AR, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Evaluation of grinding process using simultaneously MQL technique and cleaning jet on grinding wheel surface. J Mater Process Technol 271:357–367. https://doi.org/10.1016/j.jmatprotec.2019.03.019

    Article  Google Scholar 

  46. Rodriguez RL, Lopes JC, Mancini SD, de Ângelo Sanchez LE, de Almeida Varasquim FMF, Volpato RS, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Contribution for minimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol 103:487–497. https://doi.org/10.1007/s00170-019-03529-0

    Article  Google Scholar 

  47. Bianchi EC, Sato BK, Sales AR, Lopes JC, de Mello HJ, de Angelo Sanchez LE, Diniz AE, Aguiar PR (2018) Evaluating the effect of the compressed air wheel cleaning in grinding the AISI 4340 steel with CBN and MQL with water. Int J Adv Manuf Technol 95:2855–2864. https://doi.org/10.1007/s00170-017-1433-4

    Article  Google Scholar 

  48. De Mello BR, Júnior HF, Canarim RC et al (2014) Utilization of minimum quantity lubrication (MQL) with water in CBN grinding of steel. Mater Res 17:88–96. https://doi.org/10.1590/S1516-14392013005000165

    Article  Google Scholar 

  49. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, de Aguiar PR, da Silva RB, Jackson MJ (2019) Application of the auxiliary wheel cleaning jet in the plunge cylindrical grinding with minimum quantity lubrication technique under various flow rates. Proc Inst Mech Eng Part B J Eng Manuf 233:1144–1156. https://doi.org/10.1177/0954405418774599

    Article  Google Scholar 

  50. Garcia MV, Lopes JC, Diniz AE, Rodrigues AR, Volpato RS, Sanchez LEA, de Mello HJ, Aguiar PR, Bianchi EC (2020) Grinding performance of bearing steel using MQL under different dilutions and wheel cleaning for green manufacture. J Clean Prod 257:120376. https://doi.org/10.1016/j.jclepro.2020.120376

    Article  Google Scholar 

  51. de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, de Angelo Sanchez LE, Foschini CR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Performance of SAE 52100 steel grinding using MQL technique with pure and diluted oil. Int J Adv Manuf Technol 105:4211–4223. https://doi.org/10.1007/s00170-019-04582-5

    Article  Google Scholar 

  52. Lopes JC, Ventura CEH, Rodriguez RL, Talon AG, Volpato RS, Sato BK, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Application of minimum quantity lubrication with addition of water in the grinding of alumina. Int J Adv Manuf Technol 97:1951–1959. https://doi.org/10.1007/s00170-018-2085-8

    Article  Google Scholar 

  53. Field M, Kegg R, Buescher S (1980) Computerized cost analysis of grinding operations. CIRP Ann 29:233–237. https://doi.org/10.1016/S0007-8506(07)61328-6

    Article  Google Scholar 

  54. (2020) Electricity prices. https://www.globalpetrolprices.com/electricity_prices/. Accessed 17 Nov 2020

  55. Demirbas E, Kobya M (2017) Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf Environ Prot 105:79–90. https://doi.org/10.1016/j.psep.2016.10.013

    Article  Google Scholar 

  56. Wang Z, Zhang T, Yu T, Zhao J (2020) Assessment and optimization of grinding process on AISI 1045 steel in terms of green manufacturing using orthogonal experimental design and grey relational analysis. J Clean Prod 253:119896. https://doi.org/10.1016/j.jclepro.2019.119896

    Article  Google Scholar 

  57. Lopes JC, Fragoso KM, Garcia MV, Ribeiro FSF, Francelin AP, de Angelo Sanchez LE, Rodrigues AR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. Int J Adv Manuf Technol 105:4373–4387. https://doi.org/10.1007/s00170-019-04571-8

    Article  Google Scholar 

  58. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, da Silva RB, de Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916. https://doi.org/10.1007/s00170-017-1396-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors also thank companies Norton Abrasives - Saint Gobain Group for providing the grinding wheel, ITW Chemical Products for the donation of the cutting fluids and Emuge-Franken for the donation of the vortex tube and the authors thank everyone by support to the research and opportunity for scientific and technological development.

Funding

The authors thank São Paulo Research Foundation (FAPESP) (process 2018/22661–2), CAPES (Coordination for the Improvement of Higher Level Education Personnel), and CNPq (National Council for Scientific and Technological Development) for their financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

José Claudio Lopes: Writing - Original Draft; Writing - Review & Editing; Visualization; Conceptualization; Formal Analysis; Investigation; Validation.

Benício Nacif Ávila: Writing - Original Draft; Resources; Conceptualization; Methodology; Project administration.

Matheus de Souza Rodrigues: Writing - Original Draft; Writing - Review & Editing; Visualization; Conceptualization; Formal Analysis; Investigation; Validation.

Mateus Vinicius Garcia: Writing - Original Draft; Investigation; Data Curation; Formal analysis.

Fernando Sabino Fonteque Ribeiro: Conceptualization; Methodology; Validation; Writing – Original Draft.

Hamilton José de Mello: Conceptualization; Methodology; Formal Analysis; Investigation; Validation.

Luiz Eduardo de Angelo Sanchez: Writing - Review & Editing; Conceptualization; Supervision.

Paulo Roberto Aguiar: Software; Supervision.

Eduardo Carlos Bianchi: Funding acquisition; Conceptualization; Resources; Supervision; Project administration.

Corresponding author

Correspondence to Eduardo Carlos Bianchi.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethical approval

The authors declare that this manuscript was not submitted to more than one journal for simultaneous consideration. Also, the submitted work is original and not have been published elsewhere in any form or language.

Consent to participate and publish

The authors declare that they participated in this paper willingly and the authors declare to consent to the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, J.C., Ávila, B.N., de Souza Rodrigues, M. et al. Grinding comparative analysis between different proportions of water-oil applied to MQL technique and industrial production cost towards a green manufacturing. Int J Adv Manuf Technol 113, 1281–1293 (2021). https://doi.org/10.1007/s00170-021-06625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06625-2

Keywords

Navigation