Skip to main content
Log in

An analytical G3 continuous corner smoothing method with adaptive constraints adjustments for five-axis machine tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, an analytical local corner smoothing method is proposed with two specially designed quartic curves to generate smooth motion trajectories of five-axis linear segments. One symmetrical quartic B-spline curve is used to smooth the tool tip position in workpiece coordinate system (WCS); meanwhile, another asymmetrical quartic B-spline curve is used to smooth the tool orientation in machine coordinate system (MCS). With the proposed method, not only the transition error of tool tip position and the smoothing error of the tool orientation are mathematically constrained in WCS, but the G3 continuity of the tool tip position and tool orientation are guaranteed along the entire toolpath. Besides, the maximum possible machining error of tool tip position caused by transition error and chord error is also controlled analytically by transition error adjustment. What’s more, in feedrate scheduling, the feedrate of tool tip is moderately adjusted by smooth feedrate profile, which can limit the maximum feedrate of tool orientation and achieve continuous axial feedrate and acceleration. Finally, the effectiveness and feasibility of the proposed method have been validated via simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Huang J, Du X, Zhu LM (2018) Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints. Int J Mach Tools Manuf 124:67–79

    Article  Google Scholar 

  2. Tulsyan S, Altintas Y (2015) Local toolpath smoothing for five-axis machine tools. Int J Mach Tools Manuf 96:15–26

    Article  Google Scholar 

  3. Bi QZ, Wang YH, Zhu LM, Ding H (2011) A practical continuous-curvature Bézier transition algorithm for high-speed machining of linear tool path. Intelligent Robotics and Applications. ICIRA 2011. Springer, Berlin, Heidelberg. Lect Notes Comput Sci 7102:465–476

    Article  Google Scholar 

  4. Bouchenitfa H, Julien CJ, Linares JM, Sprauel JM, Azzam N, Boukebbab S (2015) Improvement of toolpath quality combining polynomial interpolation with reduction of toolpath points. Int J Adv Manuf Technol 78(5-8):875–883

    Article  Google Scholar 

  5. Wang YS, Yang DS, Liu YZ (2014) A real-time look-ahead interpolation algorithm based on Akima curve fitting. Int J Mach Tools Manuf 85:122–130

    Article  Google Scholar 

  6. Fan W, Lee CH, Chen JH, Yao X (2016) Real-time Bézier interpolation satisfyingchord error constraint for CNC tool path. Sci China Technol Sci 59:203–213

    Article  Google Scholar 

  7. Chen ZC, Khan MA (2012) Piecewise B-spline tool paths with the arc-length parameter and their application on high feed, accurate CNC milling of free-form profiles. ASME J Manuf Sci Eng 134(3):031007

    Article  Google Scholar 

  8. Bi QZ, Huang J, Lu YA, Zhu LM, Ding H (2019) A general, fast and robust B-spline fitting scheme for micro-line tool path under chord error constraint. Sci China Technol Sci 62:321–332

    Article  Google Scholar 

  9. Zhang J, Zhang LQ, Zhang K, Mao J (2016) Double NURBS trajectory generation and synchronous interpolation for five-axis machining based on dual quaternion algorithm. Int J Adv Manuf Technol 83:2015–2025

    Article  Google Scholar 

  10. Yeh SS, Su HC (2009) Implementation of online NURBS curve fitting process on CNC machines. Int J Adv Manuf Technol 40:531–540

    Article  Google Scholar 

  11. Sencer B, Ishizaki K, Shamoto E (2015) A curvature optimal sharp corner smoothing algorithm for high-speed feed motion generation of NC systems along linear tool paths. Int J Adv Manuf Technol 76:1977–1992

    Article  Google Scholar 

  12. Shahzadeh A, Khosravi A, Robinette T, Nahavandi S (2018) Smooth path planning using biclothoid fillets for high speed CNC machines. Int J Mach Tools Manuf 132:36–49

    Article  Google Scholar 

  13. Duan M, Okwudire C (2016) Minimum-time cornering for CNC machines using an optimal control method with NURBS parameterization. Int J Adv Manuf Technol 85(5-8):1405–1418

    Article  Google Scholar 

  14. Jahanpour J, Imani BM (2008) Real-time P-H curve CNC interpolators for high speed cornering. Int J Adv Manuf Technol 39:302–316

    Article  Google Scholar 

  15. Hu Q, Chen YP, Jin XL, Yang JX (2019) A real-time C3 continuous local corner smoothing and interpolation algorithm for CNC machine tools. ASME J Manuf Sci Eng 141:41004

    Article  Google Scholar 

  16. Zhang Y, Zhao MY, Ye PQ, Jiang JL, Zhang H (2018) Optimal curvature-smooth transition and efficient feedrate optimization method with axis kinematic limitations for linear toolpath. Int J Adv Manuf Technol 99:169–179

    Article  Google Scholar 

  17. Zhang Y, Ye PQ, Wu JQ, Zhang H (2018) An optimal curvature-smooth transition algorithm with axis jerk limitations along linear segments. Int J Adv Manuf Technol 95:875–888

    Article  Google Scholar 

  18. Zhao H, Zhu LM, Ding H (2013) A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments. Int J Mach Tools Manuf 65:88–98

    Article  Google Scholar 

  19. Xu FY, Sun YW (2018) A circumscribed corner rounding method based on double cubic B-splines for a five-axis linear tool path. Int J Adv Manuf Technol 94:451–462

    Article  Google Scholar 

  20. Beudaert X, Lavernhe S, Tournier C (2013) 5-Axis local corner rounding of linear tool path discontinuities. Int J Mach Tools Manuf 73:9–16

    Article  Google Scholar 

  21. Hu Q, Chen YP, Yang JX, Zhang DL (2018) An analytical C3 continuous local corner smoothing algorithm for four-axis computer numerical control machine tools. ASME J Manuf Sci Eng 140:51004–51015

    Article  Google Scholar 

  22. Zhang LQ, Zhang K, Yan YC (2016) Local corner smoothing transition algorithm based on double cubic NURBS for five-axis linear tool path. Strojniski Vestn-J Mech Eng 62:647–656

    Article  Google Scholar 

  23. Shi J, Bi Q, Zhu L, Wang Y (2015) Corner rounding of linear five-axis tool path by dual PH curves blending. Int J Mach Tools Manuf 88:223–236

    Article  Google Scholar 

  24. Bi QZ, Shi J, WangY H, Zhu LM, Ding H (2015) Analytical curvature-continuous dual-Bézier corner transition for five-axis linear tool path. Int J Mach Tools Manuf 91:96–108

    Article  Google Scholar 

  25. Beudaert X, Pechard PY, Tournier C (2011) 5-axis tool path smoothing based on drive constraints. Int J Mach Tools Manuf 51(12):958–965

    Article  Google Scholar 

  26. Yang JX, Yuen A (2017) An analytical local corner smoothing algorithm for five-axis CNC machining. Int J Mach Tools Manuf 123:22–35

    Article  Google Scholar 

  27. Zhao H, Zhang YH, Ding H (2018) A corner rounding and trajectory generation algorithm for five-axis linear toolpath. J Mech Eng 54(3):108–116

    Article  Google Scholar 

  28. Li XF, Zhao H, Zhao X, Ding H (2018) Interpolation-based contour error estimation and component-based contouring control for five-axis CNC machine tools. Sci China Technol Sci 61:1666–1678

    Article  Google Scholar 

  29. Piegl L, Tiller W (2003) The NURBS book (2nd ed), Springer, pp 81-100

  30. Dong JC, Wang TY, Li B, Ding YY (2014) Smooth feedrate planning for continuous short line tool path with contour error constraint. Int J Mach Tools Manuf 761:1–12

    Google Scholar 

  31. Zhao XY (2015) The acceleration and deceleration control and the application of high speed machining of the CNC system. Lanzhou Jiaotong University, Dissertation

    Google Scholar 

  32. Zhang L B (2012) Research on motional smoothness and contour precision control technology based on CNC system. Dissertation, Nanjing University of Aeronautics and Astronautics

Download references

Acknowledgments

I thank Dr. X.D. Chen from Hangzhou Dianzi University, for his useful advice in proving the approximation error of the asymmetrical B-spline curve. In addition, our deepest gratitude goes to our family.

Funding

This study was funded by the National Natural Science Foundation of China (grant number 51975402, 51605328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiyong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The analytical solution of the curvature extreme

According the predefined knot vector, the basis function can be calculated as,

$$ \left\{\begin{array}{l}{N}_{0,4}={\left(2u-1\right)}^4\\ {}{N}_{1,4}=-8u\cdotp {\left(2u-1\right)}^3\\ {}\begin{array}{l}{N}_{2,4}=4{u}^2\cdotp \left(17{u}^2-20u+6\right)\\ {}{N}_{3,4}=-8{u}^3\cdotp \left(3u-2\right)\\ {}{N}_{4,4}=4{u}^4\\ {}\begin{array}{c}{N}_{5,4}=0\\ {}{N}_{6,4}=0\end{array}\end{array}\end{array}\right.\kern0.5em ,u\in \left[\mathrm{0.5,1}\right)\ \mathrm{and}\kern0.5em \left\{\begin{array}{l}\begin{array}{l}\begin{array}{l}{N}_{0,4}=0\\ {}{N}_{1,4}=0\\ {}{N}_{2,4}=4{\left(u-1\right)}^4\end{array}\\ {}{N}_{3,4}=-8\left(3u-1\right)\cdotp {\left(u-1\right)}^3\\ {}{N}_{4,4}=4{\left(u-1\right)}^2\cdotp \left(17{u}^2-14u+3\right)\end{array}\\ {}{N}_{5,4}=-8{\left(2u-1\right)}^3\cdotp \left(u-1\right)\\ {}{N}_{6,4}={\left(2u-1\right)}^4\end{array}\right.\kern0.5em ,u\in \left[\mathrm{0.5,1}\right] $$
(47)

And a blending B-spline curve illustrated in Fig. 21 is constructed, where a = b = lp. The control points can be written as,

$$ {\displaystyle \begin{array}{l}{\boldsymbol{P}}_0=\left(2{l}_p,0\right);\\ {}{\boldsymbol{P}}_1=\left(1.5{l}_p,0\right);\\ {}{\boldsymbol{P}}_2=\left({l}_p,0\right);\\ {}{\boldsymbol{P}}_3=\left(0,0\right);\\ {}{\boldsymbol{P}}_4=\left({l}_p\cdotp \cos \left(\theta \right),{l}_p\cdotp \sin \left(\theta \right)\right);\\ {}{\boldsymbol{P}}_5=\left(1.5{l}_p\cdotp \cos \left(\theta \right),1.5{l}_p.\sin \left(\theta \right)\right);\\ {}{\boldsymbol{P}}_6=\left(2{l}_p\cdotp \cos \left(\theta \right),2{l}_p\cdotp \sin \left(\theta \right)\right)\end{array}} $$
(48)
Fig. 21
figure 21

The blending curve of a special corner

Thus, the expression of the curvature can be calculated as:

$$ k=\left\{\begin{array}{l}\frac{3{u}^2{\cos}^2\left(0.5\theta \right)\sin \left(0.5\theta \right)}{\varepsilon \cdotp \Big[{\left(1-8{u}^3\cdotp {\cos}^2\left(o.5\theta \right)\right)}^2+64{u}^6\cdotp {\cos}^2\left(0.5\theta \right)},u\in \left[\mathrm{0,0.5}\right)\\ {}\cdotp \sin \left(0.5\theta \right)\Big]{}^{\frac{3}{2}}\\ {}\frac{3{\left(u-1\right)}^2\cdotp {\cos}^2\left(0.5\theta \right)\cdotp \sin \left(0.5\theta \right)}{\begin{array}{c}\left(\varepsilon \right[4\left({\cos}^2\left(0.5\theta \right)\cdotp {\sin}^2\left(0.5\theta \right)\right)+\Big(12u-3\cos \left(0.5\theta \right)\\ {}-12{u}^2\cdotp \cos \left(0.5\theta \right)+4{u}^3\cdotp \cos \left(0.5\theta \right)+12u\cdotp \cos \left(0.5\theta \right)\\ {}-12{u}^2+4{u}^3-4\left){}^2\right]{}^{\frac{3}{2}}\Big)\end{array}}\end{array}\right. $$
(49)

Thus, the curvature at u = 0.5 can be calculated as,

$$ \kappa =\frac{3}{4\varepsilon \cdotp {\tan}^2\left(0.5\theta \right)} $$
(50)

Derivation of the smoothing error control

For convenience, the control points of the blending curve are constructed as Fig. 21 shows, and they can be written as,

$$ {\displaystyle \begin{array}{l}{\boldsymbol{P}}_0=\left(2a,0\right);\\ {}{\boldsymbol{P}}_1=\left(1.5a,0\right);\\ {}{\boldsymbol{P}}_2=\left(a,0\right);\\ {}{\boldsymbol{P}}_3=\left(0,0\right);\\ {}{\boldsymbol{P}}_4=\left(b\cdotp \cos \left(\theta \right),b\cdotp \sin \left(\theta \right)\right);\\ {}{\boldsymbol{P}}_5=\left(1.5b\cdotp \cos \left(\theta \right),1.5b\cdotp \sin \left(\theta \right)\right);\\ {}{\boldsymbol{P}}_6=\left(2b\cdotp \cos \left(\theta \right),2b\right)\cdotp \sin \left(\theta \right)\Big)\end{array}} $$
(51)

Supposing the current blending curve is C(A), the point P on the curve can be obtained as:

$$ \boldsymbol{P}=\left\{\begin{array}{l}\left[2\left(2{u}^4-2u+1\right)\cdotp \cos \left(\theta \right)\cdotp b,4{u}^4\cdotp b\right]=\left[2{f}_1\cdotp a+4{f}_2\cdotp b,4{f}_3\cdotp b\right],u\in \left[\mathrm{0,0.5}\right)\\ {}\left[4{\left(u-1\right)}^4\cdotp a+2\left(2{u}^4-8{u}^3+12{u}^2-6{u}^2-6u+1\right)\cdotp \cos \left(\theta \right)\cdotp b,2\left(2{u}^4-8{u}^3+12{u}^2-6u+1\right)\cdotp \sin \left(\theta \right)\cdotp b\right]=\left[4{f}_4\cdotp a+2{f}_5\cdotp b,2{f}_6\cdotp b\right],u\in \left[\mathrm{0.5,1}\right]\end{array}\right. $$
(52)

When \( 0\le \theta <\raisebox{1ex}{$\pi $}\!\left/ \!\raisebox{-1ex}{$2$}\right. \), it is easy to prove that

$$ \left\{\begin{array}{l}{f}_1>0,{f}_2>0,{f}_3>0,u\in \left[0,0.5\right)\\ {}{f}_4>0,{f}_5>0,{f}_6>0,u\in \left[0.5,1\right]\end{array}\right. $$
(53)

Thus, when the length a or b becomes larger, the point Pb on the new blending curve C(B) and the point P on the curve C(A) satisfy the following equation:

$$ \left\{\begin{array}{l}{\boldsymbol{P}}_{b,x}-{\boldsymbol{P}}_x\ge 0\\ {}{\boldsymbol{P}}_{b,y}-{\boldsymbol{P}}_y\ge 0\end{array}\right. $$
(54)

which means that the points on curve C(B) are farther from the origin point O(P3). Then, the theorem for \( \raisebox{1ex}{$\pi $}\!\left/ \!\raisebox{-1ex}{$2$}\right.\le \theta <\pi \) can be proved in the same way. And according to the affine invariance of the B-spline curve [29], this conclusion is still true for space curves.

The information of tool tip point and tool orientation in simulation 2

Number

Px (mm)

Py (mm)

Pz (mm)

O i

O j

O k

Number

Px (mm)

Py (mm)

Pz (mm)

O i

O j

O k

1

42.504

17.496

− 39.827

0.8464

0.1691

0.5050

22

32.939

− 16.351

− 15.272

0.9943

− 0.0531

0.0929

2

41.462

14.674

− 38.922

0.8637

0.1569

0.4789

23

33.241

− 15.695

− 15.329

0.9939

− 0.0543

0.0964

3

40.51

11.733

− 37.717

0.8810

0.1433

0.4509

24

33.776

− 14.461

− 15.92

0.9927

− 0.0555

0.1072

4

39.815

9.528

− 36.57

0.8936

0.1322

0.4288

25

34.352

− 12.981

− 16.684

0.9908

− 0.0546

0.1241

5

39.185

7.422

− 35.274

0.9055

0.1209

0.4068

26

34.911

− 11.347

− 17.555

0.9885

− 0.0497

0.1428

6

38.549

4.941

− 33.487

0.9190

0.1065

0.3795

27

35.439

− 9.551

− 18.533

0.9858

− 0.0377

0.1636

7

38.087

2.72

− 31.807

0.9304

0.0931

0.3545

28

35.951

− 7.455

− 19.718

0.9814

− 0.0174

0.191

8

37.687

0.599

− 30.126

0.9406

0.0797

0.33

29

36.386

− 5.096

− 21.086

0.9751

0.0056

0.2218

9

37.265

− 1.934

− 28.302

0.9513

0.0639

0.3016

30

36.719

− 2.399

− 22.755

0.966328

0.0291

0.2557

10

36.789

− 4.544

− 26.617

0.96085

0.0477

0.2729

31

36.88

0.279

− 24.521

0.9558

0.0522

0.2894

11

36.194

− 7.311

− 24.941

0.9696

0.0303

0.2426

32

36.928

2.853

− 26.412

0.9436

0.0746

0.3226

12

35.461

− 10.096

− 23.334

0.9772

0.0126

0.212

33

36.962

5.021

− 28.201

0.9315

0.0937

0.3514

13

34.520

− 12.880

− 21.803

0.9834

− 0.0055

0.181

34

37.007

7.168

− 30.093

0.9179

0.1125

0.3804

14

33.378

− 15.589

− 20.374

0.9884

− 0.0235

0.1502

35

37.104

9.052

− 31.799

0.9048

0.1287

0.4059

15

32.706

− 16.977

− 19.658

0.9908

− 0.0321

0.1316

36

37.293

10.942

− 33.47

0.8908

0.1442

0.4309

16

32.250

− 17.835

− 18.937

0.9923

− 0.0379

0.1173

37

37.599

12.838

− 35.038

0.8762

0.1588

0.455

17

32.018

− 18.233

− 17.905

0.9935

− 0.0428

0.1053

38

38.119

14.888

− 36.573

0.8598

0.1735

0.4802

18

32.009

− 18.236

− 17.217

0.994

− 0.0454

0.0993

39

38.755

16.865

− 37.833

0.8438

0.1865

0.5032

19

32.1

− 18.054

− 16.547

0.9944

− 0.0477

0.0945

40

40.035

20.323

− 39.464

0.8155

0.2066

0.5407

20

32.328

− 17.608

− 15.865

0.9946

− 0.05

0.0913

41

41.099

22.74

− 40.194

0.7951

0.2192

0.5656

21

32.645

− 16.967

− 15.421

0.9945

− 0.0518

0.0911

       

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, T., Dong, J. et al. An analytical G3 continuous corner smoothing method with adaptive constraints adjustments for five-axis machine tool. Int J Adv Manuf Technol 109, 1007–1026 (2020). https://doi.org/10.1007/s00170-020-05402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05402-x

Keywords