Skip to main content
Log in

Focused ion beam milling for prototyping 2D and 3D photonic structures

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Focused ion beam (FIB) milling is widely used in fields such as the semiconductor industry and materials science research. The direct writing and small feature size also make FIB milling attractive for rapid prototyping of novel photonic structures. In this manuscript, we describe in detail a FIB milling procedure which enables high-resolution fabrication of complex micro- and nanostructures with precise geometry control. Two different procedures (for 2D and 3D structures) are described and implemented on the tip of a glass optical fiber for fabricating diverse structures embedded on or below the tip surface. The procedures described here can be easily adjusted and implemented on any conductive or non-conductive substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ward BW, Economou NP, Shaver DC, Ivory JE, Ward ML, Stern L A (1988) Microcircuit modification using focused ion beams. Proc SPIE 0923:92–96

    Google Scholar 

  2. Abramo M, Hahn L (1996) The application of advanced techniques for complex focused-ion-beam device modification. Microelectron Reliab 36:1775–1778

    Google Scholar 

  3. Harriott LR, Wagner A, Fritz F (1986) Integrated circuit repair using focused ion beam milling. J Vac Sci Technol B: Microelectronics Process and Phenom 4:181–184

    Google Scholar 

  4. Tao T, Wilkinson W, Melngailis J (1991) Focused ion beam induced deposition of platinum for repair processes. J Vac Sci Technol B: Microelectronics Nanometer Struct Process Measur Phenom 9:162–164

    Google Scholar 

  5. Nikawa K (1991) Applications of focused ion beam technique to failure analysis of very large scale integrations: A rev. J Vac Sci Technol B: Microelectronics Nanometer Struct Process Measur Phenom 9:2566–2577

    Google Scholar 

  6. Volinsky AA, Rice L, Qin W, Theodore ND (2004) FIB failure analysis of memory arrays. Microelectronic Eng 75:3–11

    Google Scholar 

  7. Langford RM, Petford-Long AK (2001) Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vac Sci Technol A 19:2186–2193

    Google Scholar 

  8. Kato NI (2004) Reducing focused ion beam damage to transmission electron microscopy samples. Microsc 53:451–458

    Google Scholar 

  9. Langford RM (2006) Focused ion beams techniques for nanomaterials characterization. Microsc Res and Technique 69:538– 549

    Google Scholar 

  10. Mayer J, Giannuzzi LA, Kamino T, Michael J (2007) TEM sample preparation and FIB-induced damage. MRS Bull 32:400–407

    Google Scholar 

  11. Chelnokov A, Wang K, Rowson S, Garoche P, Lourtioz J-M (2000) Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon. Appl Phys Lett 77:2943–2945

    Google Scholar 

  12. Freeman D, Madden S, Luther-Davies B (2005) Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. Opt Express 13:3079–3086

    Google Scholar 

  13. Kim YK, Danner AJ, Raftery JJ, Choquette KD (2005) Focused ion beam nanopatterning for optoelectronic device fabrication. IEEE J Sel Top in Quantum Electronics 11:1292–1298

    Google Scholar 

  14. Martín-Moreno L, García-Vidal FJ, Lezec HJ, Degiron A, Ebbesen TW (2003) Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys Rev Lett 90:167401

    Google Scholar 

  15. Yao W, Liu S, Liao H, Li Z, Sun C, Chen J, Gong Q (2015) Efficient directional excitation of surface plasmons by a single-element nanoantenna. Nano Lett 15:3115–3121

    Google Scholar 

  16. Chen J, Li Z, Yue S, Gong Q (2010) Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97:041113

    Google Scholar 

  17. Maleki A, Vo TP, Hautin A, Downes JE, Coutts DW, Dawes JM (2016) Curved gratings as plasmonic lenses for linearly polarised light. Plasmonics 11:365–372

    Google Scholar 

  18. Li J, Yang C, Zhao H, Lin F, Zhu X (2014) Plasmonic focusing in spiral nanostructures under linearly polarized illumination. Opt Express 22:16686–16693

    Google Scholar 

  19. Fu Y, Liu Y, Zhou X, Xu Z, Fang F (2010) Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. Opt Express 18:3438–3443

    Google Scholar 

  20. Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett 9:2139–2143

    Google Scholar 

  21. Okuda S, Kimura N, Takeda M, Inoue T, Aizawa K (2014) Improvement of focusing characteristics of a spiral plasmonic lens. Opt Rev 21:560–562

    Google Scholar 

  22. Mao L, Ren Y, Lu Y, Lei X, Jiang K, Li K, Wang Y, Cui C, Wen X, Wang P (2016) Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna. Sci Rep 6:1–8

    Google Scholar 

  23. Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5:1726–1729

    Google Scholar 

  24. Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9:4320–4325

    Google Scholar 

  25. Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10:2075–2079

    Google Scholar 

  26. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2009) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9:235–238

    Google Scholar 

  27. Takeda M, Nakatani S (2012) Subwavelength focusing technique using a plasmonic lens. Jpn J Appl Phys 51:08JF02

    Google Scholar 

  28. Lee G-Y, Lee S-Y, Yun H, Park H, Kim J, Lee K, Lee B (2016) Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits. Sci Rep 6:1–9

    Google Scholar 

  29. Veerman JA, Otter AM, Kuipers L, Van Hulst NF (1998) High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl Phys Lett 72:3115–3117

    Google Scholar 

  30. Yatsui T, Kourogi M, Ohtsu M (1998) Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure. Appl Phys Lett 73:2090–2092

    Google Scholar 

  31. Mivelle M, Ibrahim I, Baida F, Burr G, Nedeljkovic D, Charraut D, Rauch J-Y, Salut R, Grosjean T (2010) Bowtie nano-aperture as interface between near-fields and a single-mode fiber. Opt Express 18:15964–15974

    Google Scholar 

  32. Neumann L, Pang Y, Houyou A, Juan ML, Gordon R, Van Hulst NF (2011) Extraordinary optical transmission brightens near-field fiber probe. Nano Lett 11:355–360

    Google Scholar 

  33. Kim J-B, Chang W (2016) Design and fabrication of a tip-on-aperture probe for resolution enhancement of optical patterning. Microelectronic Eng 151:24–29

    Google Scholar 

  34. Lacoste T, Huser T, Prioli R, Heinzelmann H (1998) Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM). Ultramicrosc 71:333–340

    Google Scholar 

  35. Muranishi M, Sato K, Hosaka S, Kikukawa A, Shintani T, Ito K (1997) Control of aperture size of optical probes for scanning near-field optical microscopy using focused ion beam technology. Jpn J Appl Phys 36:942–944

    Google Scholar 

  36. Pilevar S, Edinger K, Atia W, Smolyaninov I, Davis C (1998) Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy. Appl Phys Lett 72:3133–3135

    Google Scholar 

  37. Yatsui T, Kourogi M, Ohtsu M (1997) Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure. Appl Phys Lett 71:1756–1758

    Google Scholar 

  38. Zhang Y, Dhawan A, Vo-Dinh T (2010) Design and fabrication of fiber-optic nanoprobes for optical sensing. Nanoscale Res Lett 6:1–6

    Google Scholar 

  39. Sloyan K, Melkonyan H, Chiesa M, Dahlem MS (2019) Fabrication of near-field optical fiber probes through focused ion beam. CLEO SM2L.3

  40. Kim H, Kim J, An H, Lee Y, Lee G Y, Na J, Park K, Lee S, Lee S-Y, Lee B, Jeong Y (2017) Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt Express 25:30290–30303

    Google Scholar 

  41. Melkonyan H, Sloyan K, Moreira P, Dahlem MS (2017) Fabrication of a gradient-index optical fiber lens by focused ion beam. IEEE Photonics Conf (IPC):285–286

  42. Sloyan K, Melkonyan H, Moreira P, Dahlem MS (2017) Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam. Proc SPIE 10115

  43. Callegari V, Iwaniuk D, Bronnimann R, Schmid E, Sennhauser U (2009) Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres. J Micromechanics and Microeng 19:1–5

    Google Scholar 

  44. Chen W, Han W, Abeysinghe DC, Nelson RL, Zhan Q (2010) Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers. J Opt 13:1–4

    Google Scholar 

  45. Guan C, Ding M, Shi J, Hua P, Wang P, Yuan L, Brambilla G (2014) Experimental observation and analysis of all-fiber plasmonic double Airy beams. Opt Express 22:18365–18371

    Google Scholar 

  46. Kang S, Joe H-E, Kim J, Jeong Y, Min B-K, Oh K (2011) Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation. Appl Phys Lett 98:241103

    Google Scholar 

  47. Han J, Sparkes M, O’Neill W (2015) Controlling the optical fiber output beam profile by focused ion beam machining of a phase hologram on fiber tip. Appl Opt 54:890–894

    Google Scholar 

  48. Ribeiro RSR, Dahal P, Guerreiro A, Jorge P, Viegas J (2016) Optical fibers as beam shapers: from Gaussian beams to optical vortices. Opt Lett 41:2137–2140

    Google Scholar 

  49. Vayalamkuzhi P, Bhattacharya S, Eigenthaler U, Keskinbora K, Samlan CT, Hirscher M, Spatz JP, Viswanathan NK (2016) Direct patterning of vortex generators on a fiber tip using a focused ion beam. Opt Lett 41:2133–2136

    Google Scholar 

  50. Pisano F, Pisanello M, Sileo L, Qualtieri A, Sabatini BL, Vittorio MD, Pisanello F (2018) Focused ion beam nanomachining of tapered optical fibers for patterned light delivery. Microelectronic Eng 195:41–49

    Google Scholar 

  51. Schiappelli F, Kumar R, Prasciolu M, Cojoc D, Cabrini S, Vittorio MD, Visimberga G, Gerardino A, Degiorgio V, Fabrizio ED (2004) Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling. Microelectronic Eng 73-74:397–404

    Google Scholar 

  52. Janeiro R, Flores R, Dahal P, Viegas J (2016) Fabrication of a phase photon sieve on an optical fiber tip by focused ion beam nanomachining for improved fiber to silicon photonics waveguide light coupling. Opt Express 24:11611–11625

    Google Scholar 

  53. Melkonyan H, Sloyan K, Twayana K, Moreira P, Dahlem MS (2017) Efficient fiber-to-waveguide edge coupling using an optical fiber axicon lens fabricated by focused ion beam. IEEE Photonics J 9:1–9

    Google Scholar 

  54. Melkonyan H, Qubaisi KA, Sloyan K, Khilo A, Dahlem MS (2017) Gradient-index optical fiber lens for efficient fiber-to-chip coupling. Opt Express 25:13035–13045

    Google Scholar 

  55. Melkonyan H, Sloyan K, Odeh M, Almansouri I, Chiesa M, Dahlem MS (2019) Embedded parabolic fiber lens for efficient fiber-to-waveguide coupling fabricated by focused ion beam. J Phys: Photonics 1:1–7

    Google Scholar 

  56. Cabrini S, Liberale C, Cojoc D, Carpentiero A, Prasciolu M, Mora S, Degiorgio V, Angelis FD, Fabrizio ED (2006) Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling. Microelectronic Eng 83:804–807

    Google Scholar 

  57. Liberale C, Minzioni P, Bragheri F, Angelis FD, Fabrizio ED, Cristiani I (2007) Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat Photonics 1:723–727

    Google Scholar 

  58. Minzioni P, Bragheri F, Liberale C, Fabrizio ED, Cristiani I (2008) A novel approach to fiber-optic tweezers: numerical analysis of the trapping efficiency. IEEE J Sel Top in Quantum Electronics 14:151–157

    Google Scholar 

  59. Ribeiro RSR, Soppera O, Viegas J, Guerreiro A, Jorge PAS (2015) The efficiency of fiber optical tweezers for cell manipulation using distinct fabrication methods. Proc SPIE 9379

  60. Ribeiro RSR, Dahal P, Guerreiro A, Jorge PAS, Viegas J (2017) Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Sci Rep 7:1–14

    Google Scholar 

  61. Martelli C, Olivero P, Canning J, Groothoff N, Gibson B, Huntington S (2007) Micromachining structured optical fibers using focused ion beam milling. Opt Lett 32:1575–1577

    Google Scholar 

  62. Cordeiro CMB, Matos CJSD, Santos EMD, Bozolan A, Ong JSK, Facincani T, Chesini G, Vaz AR, Cruz CHB (2007) Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre. Measur Sci Technol 18:3075–3081

    Google Scholar 

  63. Wang F, Yuan W, Hansen O, Bang O (2011) Selective filling of photonic crystal fibers using focused ion beam milled microchannels. Opt Express 19:17585–17590

    Google Scholar 

  64. Yuan W, Wang F, Savenko A, Petersen DH, Bang O (2011) Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor. Rev Sci Instrum 076103:82

    Google Scholar 

  65. Nayak KP, Kien FL, Kawai Y, Hakuta K, Nakajima K, Miyazaki HT, Sugimoto Y (2011) Cavity formation on an optical nanofiber using focused ion beam milling technique. Opt Express 19:14040–14050

    Google Scholar 

  66. André RM, Pevec S, Becker M, Dellith J, Rothhardt M, Marques MB, Donlagic D, Bartelt H, Frazáo O (2014) Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications. Opt Express 22:13102–13108

    Google Scholar 

  67. André RM, Warren-Smith SC, Becker M, Dellith J, Rothhardt M, Zibaii MI, Latifi H, Marques MB, Bartelt H, Frazáo O (2016) Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips. Opt Express 24:14053–14065

    Google Scholar 

  68. Flores R, Janeiro R, Viegas J (2019) Optical fibre Fabry-Pérot interferometer based on inline microcavities for salinity and temperature sensing. Sci Rep 9:1–9

    Google Scholar 

  69. Kou JL, Qiu SJ, Xu F, Lu YQ (2011) Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt Express 19:18452–18457

    Google Scholar 

  70. Feng J, Ding M, Kou J, Xu F, Lu Y (2011) An optical fiber tip micrograting thermometer. IEEE Photonics J 3:810–814

    Google Scholar 

  71. Huang J, Alqahtani A, Viegas J, Dahlem MS (2012) Fabrication of optical fiber gratings through focused ion beam techniques for sensing applications. Photonics Global Conf (PGC):1–4

  72. Martelli C, Olivero P, Canning J, Groothoff N, Prawer S, Huntington S, Gibson B (2007) Micromachining long period gratings in optical fibres using focused ion beam. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides BTuC

  73. Langford RM, Nellen PM, Gierak J, Fu Y (2007) Focused ion beam micro- and nanoengineering. MRS Bull. 32:417–423

    Google Scholar 

  74. Møller PJ, He J (1986) Electron beam induced charging of Cu/MgO surfaces. Nucl Instrum and Methods in Phys Res Sect B: Beam Interactions with Materials and Atoms 17:137–140

    Google Scholar 

  75. Yogev S, Levin J, Molotskii M, Schwarzman A, Avayu O, Rosenwaks Y (2008) Charging of dielectrics under focused ion beam irradiation. J Appl Phys 103:064107

    Google Scholar 

  76. Fu Y, Bryan N (2005) Investigation of physical properties of quartz after focused ion beam bombardment. Appl Phys B 80:581–585

    Google Scholar 

  77. Bassim ND, Scott KC, Giannuzzi LA (2014) Recent advances in focused ion beam technology and applications. MRS Bull 39:317–325

    Google Scholar 

  78. FEI Company (2012) Helios NanoLab 450/450S/450ML/ 650/600i User Operation Manual

  79. Fu Y, Bryan N, Shing O, Hung N (2000) Influence of the redeposition effect for focused ion beam 3D micromachining in silicon. The Int J Adv Manuf Technol 16:877–880

    Google Scholar 

  80. Winter DAMD, Mulders JJL (2007) Redeposition characteristics of focused ion beam milling for nanofabrication. J Vac Sci Technol B: Microelectronics Nanometer Struct Process Measur Phenom 25:2215–2218

    Google Scholar 

  81. Prenitzer B, Urbanik-Shannon C, Giannuzzi L, Brown S, Irwin R, Shofner T, Stevie F (2003) The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc and Microanal 9:216–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Sloyan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sloyan, K., Melkonyan, H. & Dahlem, M.S. Focused ion beam milling for prototyping 2D and 3D photonic structures. Int J Adv Manuf Technol 107, 4469–4480 (2020). https://doi.org/10.1007/s00170-020-05327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05327-5

Keywords

Navigation