Skip to main content

Advertisement

Log in

Membranes for hydrogen separation: a significant review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hydrogen (H2)-selective membranes involve significantly less energy and generally a better way to manage them. Partial inlet/outlet pressure of H2, as well as temperature, are the best parameters for membrane processes. Membrane processes are appropriate for portable applications and small scale as opposed to other separation techniques. The membrane can also be performed at different pressure and temperature ranges. The critical purpose of the separation membrane is the suitable usage in membrane reactors that permit the purification and production of synchronous H2. Observations of alterations in the structural and chemical properties have been commonly performed to understand the process by which polymers degrade. The validity of each observational procedure depends primarily on the test material and type of degradation. An appropriate method for the characterization of polymers can often be utilized to examine the properties of degradation. The service life of a polymer depends strongly on the conditions to which the material is subjected. On the other hand, the stability of the material, including nanocomposite polymer blends, often dictates its usefulness. Thus, this review was aimed to evaluate the degradation of nanocomposite polymer blends, with specific focus on the role of the fillers and the composition of the blends. The factors that could significantly affect the degradation of the same were the presence of a filler, as well as the morphology and composition of the blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wisniak J, Thomas Graham I (2013) Contributions to thermodynamics, chemistry, and the occlusion of gases. Educación Química 24:316–325

    Google Scholar 

  2. Spillman R (1995) Chapter 13 Economics of gas separation membrane processes. In: Noble RD, Stern SA (eds) Membrane Science and Technology. Elsevier, pp 589–667

  3. Wang Y, Ma X, Ghanem BS, Alghunaimi F, Pinnau I, Han Y (2018) Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater Today Nano 3:69–95

    Google Scholar 

  4. Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD (2017) 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50:7809–7843

    Google Scholar 

  5. Cheng XQ, Wang ZX, Jiang X, Li T, Lau CH, Guo Z, Ma J, Shao L (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283

    Google Scholar 

  6. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Google Scholar 

  7. Robeson LM (2016) Polymeric membranes for gas separation, in: reference module in materials science and materials engineering. Elsevier

  8. Sunarso J, Hashim SS, Lin YS, Liu SM (2017) Membranes for helium recovery: an overview on the context, materials and future directions. Sep Purif Technol 176:335–383

    Google Scholar 

  9. Wang N, Wang L, Zhang R, Li J, Zhao C, Wu T, Ji S (2015) Highly stable “pore-filling” tubular composite membrane by self-crosslinkable hyperbranched polymers for toluene/n-heptane separation. J Membr Sci 474:263–272

    Google Scholar 

  10. Liu J, Hou X, Park HB, Lin H (2016) High-performance polymers for membrane CO2/N2 separation. Chem Eur J 22:15980–15990

    Google Scholar 

  11. Sazali N, Salleh WNW, Ismail AF, Nordin NAHM, Ismail NH, Mohamed MA, Aziz F, Yusof N, Jaafar J (2018) Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. J Nat Gas Sci Eng 49:376–384

    Google Scholar 

  12. Sazali N, Salleh WNW, Ismail AF, Wong KC, Iwamoto Y (2018) Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations. J Appl Polym Sci

  13. Mohamed MA, Salleh WNW, Jaafar J, Asri SEAM, Ismail AF (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849

    Google Scholar 

  14. Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S (2015) Recent developments in membranes for efficient hydrogen purification. J Membr Sci 495:130–168

    Google Scholar 

  15. Ogundare SA, Moodley V, van Zyl WE (2017) Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohydr Polym 175:273–281

    Google Scholar 

  16. Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051

    Google Scholar 

  17. Nowsheen G, Archana B-L, Dhanjay J (2015) Biodegradable polymer blends: miscibility, physicochemical properties and biological response of scaffolds. Polym Int 64:1289–1302

    Google Scholar 

  18. Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC, Ismail NH (2018) Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment. Int J Hydrog Energy

  19. Sazali N, Salleh WNW, Ismail AF, Ismail NH, Yusof N, Aziz F, Jaafar J, Kadirgama K (2018) Influence of intermediate layers in tubular carbon membrane for gas separation performance. Int J Hydrog Energy

  20. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    Google Scholar 

  21. Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34:3589–3603

    Google Scholar 

  22. Muradov NZ, Veziroǧlu TN (2005) From hydrocarbon to hydrogen–carbon to hydrogen economy. Int J Hydrog Energy 30:225–237

    Google Scholar 

  23. Hames Y, Kaya K, Baltacioglu E, Turksoy A (2018) Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrog Energy 43:10810–10821

    Google Scholar 

  24. Grewe T, Meggouh M, Tüysüz H (2016) Nanocatalysts for solar water splitting and a perspective on hydrogen economy. Chem Asian J 11:22–42

    Google Scholar 

  25. Hashim SS, Mohamed AR, Bhatia S (2011) Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew Sust Energ Rev 15:1284–1293

    Google Scholar 

  26. Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manag 165:602–627

    Google Scholar 

  27. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49

    Google Scholar 

  28. Bernardo G, Araújo T, da Silva Lopes T, Sousa J, Mendes A (2019) Recent advances in membrane technologies for hydrogen purification. Int J Hydrog Energy

  29. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrog Energy 45:3847–3869

    Google Scholar 

  30. Chehade G, Lytle S, Ishaq H, Dincer I (2020) Hydrogen production by microwave based plasma dissociation of water. Fuel 264:116831

    Google Scholar 

  31. Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81

    Google Scholar 

  32. Castel C, Wang L, Corriou JP, Favre E (2018) Steady vs unsteady membrane gas separation processes. Chem Eng Sci 183:136–147

    Google Scholar 

  33. Collier A, Wang H, Zi Yuan X, Zhang J, Wilkinson DP (2006) Degradation of polymer electrolyte membranes. Int J Hydrog Energy 31:1838–1854

    Google Scholar 

  34. Burra KRG, Bassioni G, Gupta AK (2018) Catalytic transformation of H2S for H2 production. Int J Hydrog Energy 43:22852–22860

    Google Scholar 

  35. Yin H, Yip A (2017) A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies. Catalysts 7:297

    Google Scholar 

  36. Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S, Su S, Sun L (2016) Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: a review. Renew Sust Energ Rev 61:433–450

    Google Scholar 

  37. Wassie SA, Cloete S, Spallina V, Gallucci F, Amini S, van Sint Annaland M (2018) Techno-economic assessment of membrane-assisted gas switching reforming for pure H2 production with CO2 capture. Int J Greenhouse Gas Control 72:163–174

    Google Scholar 

  38. Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conference Papers in Energy 2013:9

    Google Scholar 

  39. Kourde-Hanafi Y, Loulergue P, Szymczyk A, Van der Bruggen B, Nachtnebel M, Rabiller-Baudry M, Audic J-L, Pölt P, Baddari K (2017) Influence of PVP content on degradation of PES/PVP membranes: insights from characterization of membranes with controlled composition. J Membr Sci 533:261–269

    Google Scholar 

  40. Maya EM, Lozano AE, de Abajo J, de la Campa JG (2007) Chemical modification of copolyimides with bulky pendent groups: effect of modification on solubility and thermal stability. Polym Degrad Stab 92:2294–2299

    Google Scholar 

  41. Zhang B, Li L, Wang C, Pang J, Zhang S, Jian X, Wang T (2015) Effect of membrane-casting parameters on the microstructure and gas permeation of carbon membranes. RSC Adv 5:60345–60353

    Google Scholar 

  42. Huertas RM, Tena A, Lozano AE, de Abajo J, de la Campa JG, Maya EM (2013) Thermal degradation of crosslinked copolyimide membranes to obtain productive gas separation membranes. Polym Degrad Stab 98:743–750

    Google Scholar 

  43. Choi W, Ingole PG, Park J-S, Lee D-W, Kim J-H, Lee H-K (2015) H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method. Chem Eng Res Des 102:297–306

    Google Scholar 

  44. Yun J, Chen L, Zhang X, Zhao H, Wen Z, Zhang C (2017) The effects of silicon and ferrocene on the char formation of modified novolac resin with high char yield. Polym Degrad Stab 139:97–106

    Google Scholar 

  45. Garnier J, Dufils P-E, Vinas J, Vanderveken Y, van Herk A, Lacroix-Desmazes P (2012) Synthesis of poly(vinylidene chloride)-based composite latexes by emulsion polymerization from epoxy functional seeds for improved thermal stability. Polym Degrad Stab 97:170–177

    Google Scholar 

  46. Moharir RV, Kumar S (2018) Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review. J Clean Prod

  47. Scaffaro R, Botta L, La Mantia FP, Gleria M, Bertani R, Samperi F, Scaltro G (2006) Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. II: effect of different polyamides on the properties of extruded samples. Polym Degrad Stab 91:2265–2274

    Google Scholar 

  48. Scaffaro R, Botta L, La Mantia FP, Magagnini P, Acierno D, Gleria M, Bertani R (2005) Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. I: preliminary study in a batch mixer. Polym Degrad Stab 90:234–243

    Google Scholar 

  49. Hunger K, Schmeling N, Jeazet HBT, Janiak C, Staudt C, Kleinermanns K (2012) Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes (Basel) 2:727–763

    Google Scholar 

  50. de Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155

    Google Scholar 

  51. Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189

    Google Scholar 

  52. Lafyatis DS, Tung J, Foley HC (1991) Poly(furfuryl alcohol)-derived carbon molecular sieves: dependence of adsorptive properties on carbonization temperature, time, and poly(ethylene glycol) additives. Ind Eng Chem Res 30:865–873

    Google Scholar 

  53. Allen NS, Chirinis-Padron A, Henman TJ (1985) The photo-stabilisation of polypropylene: a review. Polym Degrad Stab 13:31–76

    Google Scholar 

  54. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276

    Google Scholar 

  55. Alaerts L, Augustinus M, Van Acker K (2018) Impact of bio-based plastics on current recycling of plastics. Sustainability 10:1487

    Google Scholar 

  56. Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers 9:523

    Google Scholar 

  57. Sadykov VA, Krasnov AV, Fedorova YE, Lukashevich AI, Bespalko YN, Eremeev NF, Skriabin PI, Valeev KR, Smorygo OL (2018) Novel nanocomposite materials for oxygen and hydrogen separation membranes. Int J Hydrog Energy

  58. Soares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S (2018) Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C 92:969–982

    Google Scholar 

  59. Kawaguchi H, Ogino C, Kondo A (2017) Microbial conversion of biomass into bio-based polymers. Bioresour Technol 245:1664–1673

    Google Scholar 

  60. Hu J, Wang Z, Lu Z, Chen C, Shi M, Wang J, Zhao E, Zeng K, Yang G (2017) Bio-based adenine-containing high performance polyimide. Polymer 119:59–65

    Google Scholar 

  61. Rikkou MD, Patrickios CS (2011) Polymers prepared using cleavable initiators: synthesis, characterization and degradation. Prog Polym Sci 36:1079–1097

    Google Scholar 

  62. Pesiri DR, Jorgensen B, Dye RC (2003) Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J Membr Sci 218:11–18

    Google Scholar 

  63. Sazali N, Salleh WNW, Ismail AF (2017) Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. Int J Hydrog Energy 42:9952–9957

    Google Scholar 

  64. Aguilar-Vega M, Paul DR (1993) Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group. J Polym Sci B Polym Phys 31:1599–1610

    Google Scholar 

  65. Takht Ravanchi M, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235:199–244

    Google Scholar 

  66. Chung T-S, Shao L, Tin PS (2006) Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol Rapid Commun 27:998–1003

    Google Scholar 

  67. Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603

    Google Scholar 

  68. Salleh WNW, Ismail AF (2011) Carbon hollow fiber membranes derived from PEI/PVP for gas separation. Sep Purif Technol 80:541–548

    Google Scholar 

  69. Vu DQ, Koros WJ, Miller SJ (2002) High pressure CO2/CH4 separation using carbon molecular sieve hollow Fiber membranes. Ind Eng Chem Res 41:367–380

    Google Scholar 

  70. Lee RJ, Jawad ZA, Ahmad AL, Ngo JQ, Chua HB (2017) Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate. IOP Conf Ser Mater Sci Eng 206:012072

    Google Scholar 

  71. Achoundong CSK, Bhuwania N, Burgess SK, Karvan O, Johnson JR, Koros WJ (2013) Silane modification of cellulose acetate dense films as materials for acid gas removal. Macromolecules 46:5584–5594

    Google Scholar 

  72. Perry JD, Nagai K, Koros WJ (2011) Polymer membranes for hydrogen separations. MRS Bull 31:745–749

    Google Scholar 

  73. Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246

    Google Scholar 

  74. Liang CZ, Chung T-S, Lai J-Y (2019) A review of polymeric composite membranes for gas separation and energy production. Prog Polym Sci 97:101141

    Google Scholar 

  75. Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250

    Google Scholar 

  76. Demirbaş A (2005) Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energy Sources 27:1313–1319

    Google Scholar 

  77. Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907

    Google Scholar 

  78. Tachibana Y, Yamahata M, Ichihara H, Kasuya K-i (2017) Biodegradability of polyesters comprising a bio-based monomer derived from furfural. Polym Degrad Stab 146:121–125

    Google Scholar 

  79. Bounaceur R, Berger E, Pfister M, Ramirez Santos AA, Favre E (2017) Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool. J Membr Sci 523:77–91

    Google Scholar 

  80. Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers, in: materials science of membranes for gas and vapor separation. John Wiley & Sons, Ltd, pp 1–47

  81. Yong WF, Li FY, Chung T-S, Tong YW (2013) Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. J Mater Chem A 1:13914–13925

    Google Scholar 

  82. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sust Energ Rev 14:233–248

    Google Scholar 

  83. Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542

    Google Scholar 

  84. Marczewski M, Kamińska E, Marczewska H, Godek M, Rokicki G, Sokołowski J (2013) Catalytic decomposition of polystyrene. The role of acid and basic active centers. Appl Catal B Environ 129:236–246

    Google Scholar 

  85. Zhang X, Lei H, Zhu L, Zhu X, Qian M, Yadavalli G, Wu J, Chen S (2016) Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour Technol 220:233–238

    Google Scholar 

  86. Lawrence J, Yamaguchi T (2008) The degradation mechanism of sulfonated poly(arylene ether sulfone)s in an oxidative environment. J Membr Sci 325:633–640

    Google Scholar 

  87. Klapiszewski Ł, Bula K, Sobczak M, Jesionowski T (2016) Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites. Int J Polym Sci 2016:9

    Google Scholar 

  88. Parcheta P, Koltsov I, Datta J (2018) Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis. Polym Degrad Stab 151:90–99

    Google Scholar 

  89. Nisar J, Ali G, Ullah N, Awan IA, Iqbal M, Shah A, Sirajuddin, Sayed M, Mahmood T, Khan MS (2018) Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield. J Environ Chem Eng 6:3469–3473

    Google Scholar 

  90. Li H, Jiang X, Cui H, Wang F, Zhang X, Yang L, Wang C (2015) Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. J Anal Appl Pyrolysis 115:37–42

    Google Scholar 

  91. Miranda M, Pinto F, Gulyurtlu I, Cabrita I (2013) Pyrolysis of rubber tyre wastes: a kinetic study. Fuel 103:542–552

    Google Scholar 

  92. Tan K, Li C, Meng H, Wang Z (2009) Preparation and characterization of thermoplastic elastomer of poly(vinyl chloride) and chlorinated waste rubber. Polym Test 28:2–7

    Google Scholar 

  93. Yao Q, Wilkie CA (1999) Thermal degradation of blends of polystyrene and poly(sodium 4-styrenesulfonate) and the copolymer, poly(styrene-co-sodium 4-styrenesulfonate). Polym Degrad Stab 66:379–384

    Google Scholar 

  94. Naffakh M, Ellis G, Gómez MA, Marco C (1999) Thermal decomposition of technological polymer blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polym Degrad Stab 66:405–413

    Google Scholar 

  95. Snegirev AY, Talalov VA, Stepanov VV, Korobeinichev OP, Gerasimov IE, Shmakov AG (2017) Autocatalysis in thermal decomposition of polymers. Polym Degrad Stab 137:151–161

    Google Scholar 

  96. Mei W, Du Y, Wu T, Gao F, Wang B, Duan J, Zhou J, Zhou R (2018) High-flux CHA zeolite membranes for H2 separations. J Membr Sci 565:358–369

    Google Scholar 

  97. Sánchez-Laínez J, Zornoza B, Téllez C, Coronas J (2016) On the chemical filler–polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. J Mater Chem A 4:14334–14341

    Google Scholar 

  98. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Google Scholar 

  99. Utracki LA (2002) Compatibilization of polymer blends. Can J Chem Eng 80:1008–1016

    Google Scholar 

  100. Barić B, Kovačić T (1998) Isothermal degradation of PVC/MBS blends. J Therm Anal Calorim 54:753–764

    Google Scholar 

  101. Ulf B, Alexandra L Micro-macroporous composite materials – preparation techniques and selected applications: a review. Adv Eng Mater:1800252

  102. Chandavasu C, Xanthos M, Sirkar KK, Gogos CG (2003) Fabrication of microporous polymeric membranes by melt processing of immiscible blends. J Membr Sci 211:167–175

    Google Scholar 

  103. Tambasco M, Lipson JEG, Higgins JS (2004) New routes to the characterization and prediction of polymer blend properties. Macromolecules 37:9219–9230

    Google Scholar 

  104. Kim YK, Park HB, Lee YM (2004) Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membr Sci 243:9–17

    Google Scholar 

  105. Shirin S, Ahmad A (2009) A review on ternary immiscible polymer blends: morphology and effective parameters. Polym Adv Technol 20:433–447

    Google Scholar 

  106. Tanaka S, Yasuda T, Katayama Y, Miyake Y (2011) Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. J Membr Sci 379:52–59

    Google Scholar 

  107. Hou H, Di Vona ML, Knauth P (2012) Building bridges: crosslinking of sulfonated aromatic polymers—a review. J Membr Sci 423-424:113–127

    Google Scholar 

  108. Hosseini SS, Omidkhah MR, Zarringhalam Moghaddam A, Pirouzfar V, Krantz WB, Tan NR (2014) Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Sep Purif Technol 122:278–289

    Google Scholar 

  109. Fan H, Ran F, Zhang X, Song H, Jing W, Shen K, Kong L, Kang L (2014) A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: preparation, characterization and electrochemical capacitive performance. J Energy Chem 23:684–693

    Google Scholar 

  110. Itta AK, Tseng H-H, Wey M-Y (2011) Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J Membr Sci 372:387–395

    Google Scholar 

  111. Salehian P, Yong WF, Chung T-S (2016) Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. J Membr Sci 518:110–119

    Google Scholar 

  112. Moon EJ, Kim JW, Kim CK (2006) Fabrication of membranes for the liquid separation: part 2: microfiltration membranes prepared from immiscible blends containing polysulfone and poly(1-vinylpyrrolidone-co-acrylonitrile) copolymers. J Membr Sci 274:244–251

    Google Scholar 

  113. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Google Scholar 

  114. Halder K, Khan MM, Grünauer J, Shishatskiy S, Abetz C, Filiz V, Abetz V (2017) Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J Membr Sci 539:368–382

    Google Scholar 

  115. La Mantia FP, Morreale M, Botta L, Mistretta MC, Ceraulo M, Scaffaro R (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab 145:79–92

    Google Scholar 

  116. La Mantia FP, Valenza A (1985) Long-term thermomechanical degradation of molten polystyrene. Polym Degrad Stab 13:105–111

    Google Scholar 

  117. Matusinovic Z, Shukla R, Manias E, Hogshead CG, Wilkie CA (2012) Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym Degrad Stab 97:2481–2486

    Google Scholar 

  118. Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC (2018) P84 co-polyimide based-tubular carbon membrane: effect of heating rates on helium separations. Solid State Phenom 280:308–311

    Google Scholar 

  119. Sazali N, Salleh WNW, Ismail AF, Ismail NH, Mohamed MA, Nordin NAHM, Sokri MNM, Iwamoto Y, Honda S (2018) Enhanced gas separation performance using carbon membranes containing nanocrystalline cellulose and BTDA-TDI/MDI polyimide. Chem Eng Res Des

  120. Sazali N, Salleh WNW, Nordin NAHM, Ismail AF (2015) Matrimid-based carbon tubular membrane: effect of carbonization environment. J Ind Eng Chem 32:167–171

    Google Scholar 

  121. Kim JS, Moon SJ, Wang HH, Kim S, Lee YM (2019) Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation. J Membr Sci 582:381–390

    Google Scholar 

  122. Strugova DV, Zadorozhnyy MY, Berdonosova EA, Yablokova MY, Konik PA, Zheleznyi MV, Semenov DV, Milovzorov GS, Padaki M, Kaloshkin SD, Zadorozhnyy VY, Klyamkin SN (2018) Novel process for preparation of metal-polymer composite membranes for hydrogen separation. Int J Hydrog Energy 43:12146–12152

    Google Scholar 

  123. Mural PKS, Madras G, Bose S (2018) Polymeric membranes derived from immiscible blends with hierarchical porous structures, tailored bio-interfaces and enhanced flux: potential and key challenges. Nano-Structures Nano-Objects 14:149–165

    Google Scholar 

  124. Zhao Y, Zhao D, Kong C, Zhou F, Jiang T, Chen L (2019) Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2. Sep Purif Technol 220:197–205

    Google Scholar 

  125. Hayes DG, Wadsworth LC, Sintim HY, Flury M, English M, Schaeffer S, Saxton AM (2017) Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym Test 62:454–467

    Google Scholar 

  126. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584

    Google Scholar 

  127. Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: An overview of the recent works. Polym Degrad Stab 98:2801–2812

    Google Scholar 

  128. Rizzarelli P, Carroccio S (2014) Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal Chim Acta 808:18–43

    Google Scholar 

  129. Badia JD, Gil-Castell O, Ribes-Greus A (2017) Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 137:35–57

    Google Scholar 

  130. Lei F, Li Z, Ye L, Wang Y, Lin S (2016) One-pot synthesis of Pt/SnO2/GNs and its electro-photo-synergistic catalysis for methanol oxidation. Int J Hydrog Energy 41:255–264

    Google Scholar 

  131. Chen X, Wang J, Shen J (2005) Effect of UV-irradiation on poly(vinyl chloride) modified by methyl methacrylate–butadiene–styrene copolymer. Polym Degrad Stab 87:527–533

    Google Scholar 

  132. Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112

    Google Scholar 

  133. Hao J, Jiang Y, Gao X, Xie F, Shao Z, Yi B (2017) Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger. J Membr Sci 522:23–30

    Google Scholar 

  134. Cook WJ, Cameron JA, Bell JP, Huang SJ (1981) Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. J Polym Sci Polym Lett Ed 19:159–165

    Google Scholar 

  135. Ji Y-L, An Q-F, Weng X-D, Hung W-S, Lee K-R, Gao C-J (2018) Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. J Membr Sci 548:559–571

    Google Scholar 

  136. Abdelsamad AMA, Khalil ASG, Ulbricht M (2018) Influence of controlled functionalization of mesoporous silica nanoparticles as tailored fillers for thin-film nanocomposite membranes on desalination performance. J Membr Sci 563:149–161

    Google Scholar 

  137. Volgin IV, Larin SV, Lyulin AV, Lyulin SV (2018) Coarse-grained molecular-dynamics simulations of nanoparticle diffusion in polymer nanocomposites. Polymer 145:80–87

    Google Scholar 

  138. Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197

    Google Scholar 

  139. Shen Y-x, Saboe PO, Sines IT, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Membr Sci 454:359–381

    Google Scholar 

  140. Whitesides GM (2004) Preface. In: van Rijn CJM (ed) Membrane Science and Technology. Elsevier, pp vii–viii

  141. Attia NF, Abd El-Aal NS, Hassan MA (2016) Facile synthesis of graphene sheets decorated nanoparticles and flammability of their polymer nanocomposites. Polym Degrad Stab 126:65–74

    Google Scholar 

  142. Burgos-Mármol JJ, Patti A (2017) Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer 113:92–104

    Google Scholar 

  143. Wang R, Shi X, Xiao A, Zhou W, Wang Y (2018) Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J Membr Sci 566:197–204

    Google Scholar 

  144. Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46

    Google Scholar 

  145. Ahmed L, Zhang B, Hatanaka LC, Mannan MS (2018) Application of polymer nanocomposites in the flame retardancy study. J Loss Prev Process Ind 55:381–391

    Google Scholar 

  146. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187

    Google Scholar 

  147. Bose S, Robertson SF, Bandyopadhyay A (2018) Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 66:6–22

    Google Scholar 

  148. Chen Q, Liang S, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38:584–671

    Google Scholar 

  149. Soro N, Brassart L, Chen Y, Veidt M, Attar H, Dargusch MS (2018) Finite element analysis of porous commercially pure titanium for biomedical implant application. Mater Sci Eng A 725:43–50

    Google Scholar 

  150. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63

    Google Scholar 

  151. Li H, Zhang G, Wu J, Zhao C, Jia Q, Lew CM, Zhang L, Zhang Y, Han M, Zhu J, Shao K, Ni J, Na H (2010) A facile approach to prepare self-cross-linkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. J Power Sources 195:8061–8066

    Google Scholar 

Download references

Acknowledgments

The authors would also gratefully acknowledge the financial support from the Ministry of Higher Education and Universiti Malaysia Pahang under Fundamental Research Grant Scheme (RACER/1/2019/TK10/UMP/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norazlianie Sazali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazali, N., Mohamed, M.A. & Salleh, W.N.W. Membranes for hydrogen separation: a significant review. Int J Adv Manuf Technol 107, 1859–1881 (2020). https://doi.org/10.1007/s00170-020-05141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05141-z

Keywords

Navigation