Skip to main content
Log in

Stability of micro dry wire EDM: OFAT and DOE method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro dry wire electrical discharge machining (μDWEDM) is an environmental-friendly machining process where gas is used as the dielectric fluid instead of liquid. In this process, certain modifications of wire electrical discharge machining (WEDM) are required during the machining operation for stable machining. In μDWEDM, the process is considered stable if the machining is continuous without any interruption due to wire breakage or wire lag. However, in the present state of the arts, stable and smooth machining process using μDWEDM remains a critical issue. Hence, the objectives of this research are to establish a stable μDWEDM process using two different experimental approaches: one-factor-at-a-time (OFAT) and design of experiment (DOE) method. The investigation was performed on a stainless steel (SS304) with a tungsten wire as the electrode using integrated multi-process machine tool, DT 110 (Mikrotools Inc., Singapore). Types of dielectric fluid, dielectric fluid pressure, polarity, threshold voltage, wire tension, wire feed rate, wire speed, gap voltage, and capacitance were the controlled parameters. The machining length of the microchannels was measured using scanning electron microscope (SEM) (JEOL JSM-5600, Japan). Analysis based on these two experimental approaches shows that stable μDWEDM process is achievable when the types of dielectric fluid, dielectric fluid pressure, polarity, threshold voltage, wire tension, wire feed rate, and wire speed remain as the fixed parameters while the capacitance and gap voltage remain as the controlled parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liao YS, Chen ST, Lin CS (2005) Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts. J Micromech Microeng 15:245–253

    Google Scholar 

  2. Yoo HK, Kwon WT, Kang S (2014) Development of a new electrode for micro-electrical discharge machining (EDM) using Ti(C,N)-based cermet. Int J Precis Eng Manuf 15(4):609–616

    Google Scholar 

  3. Hoang KT, Yang SH (2013) A study on the effect of different vibration-assisted methods in micro-WEDM. J Mater Process Technol 213:1616–1622

    Google Scholar 

  4. Hoang KT, Yang SH (2015) A new approach for micro-WEDM control based on real-time estimation of material removal rate. Int J Precis Eng Manuf 16(2):241–246

    Google Scholar 

  5. Debroy A, Chakraborty S (2013) Non-conventional optimization techniques in optimizing non-traditional machining processes: a review. Manag Sci Lett 3(1):23–38

    Google Scholar 

  6. Yan MT (2010) An adaptive control system with self-organizing fuzzy sliding mode control strategy for micro wire-EDM machines. Int J Adv Manuf Technol 50:315–328

    Google Scholar 

  7. Pour GT, Pour YT, & Ghoreishi M (2014) Electro-spark nanomachining process simulation. Int J Mater Mech Manuf, 2 (1)

  8. Pour GT, Pour YT, Ghoreishi M (2014) Thermal model of the electro-spark nanomachining process. Int J Mater Mech Manuf 2(1):56–59

    Google Scholar 

  9. Banu A, Ali MY (2016) Electrical discharge machining (EDM): a review. Int J Eng Mater Manuf 1(1):3–10

    Google Scholar 

  10. Banu A, Ali MY, Rahman MA, Konneh M (2019) Investigation of process parameters for stable micro dry wire electrical discharge machining. Int J Adv Manuf Technol 103(1–4):723–741

    Google Scholar 

  11. Azhiri RB, Teimouri R, Baboly MG, Laseman Z (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modelling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71(1):279–295

    Google Scholar 

  12. Pandey A, Singh S (2010) Current research trends in variants of electrical discharge machining: a review. Int J Eng Sci Technol 2(6):2172–2191

    Google Scholar 

  13. Ali MY, Banu A, Rahman MA, Hazza M, Adesta EYT (2018) Precision control of kerf in metal cutting using dry micro WEDM: issues and challenges. Key Eng Mater 775:49–505

    Google Scholar 

  14. Leao FN, Pashby IR (2004) A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149:341–346

    Google Scholar 

  15. Ghodsiyeh D, Moradi M (2015) Wire electrical discharge machining. In: Jahan MP (ed) Electrical discharge machining (EDM) types, technologies and applications. Nova Science Publishers, Inc., New York, pp 33–65

    Google Scholar 

  16. Wani YB, Patil DD (2017) An experimental design approach for optimization of spectrophotometric method for estimation of cefixime trihydrate using ninhydrin as derivatizing reagent in bulk and pharmaceutical formulation. J Saudi Chem Soc 21:S101–S111

    Google Scholar 

  17. Wahid Z, Nadir N (2013) Improvement of one factor at a time through design of experiments. World Appl Sci J 21:56–61

    Google Scholar 

  18. McDonald GC & Gunst RF (1991) Issues involved in the choice of experimental design strategies (Technical Report No. SMU/DS/TR/253). Department of Statistical Science, Southern Methodist University

  19. Xu H, Phoa FK, Wong WK (2009) Recent developments in nonregular fractional factorial designs. Stat Surv 3:18–46

    MathSciNet  MATH  Google Scholar 

  20. Montgomery DC (2005) Design and analysis of experiments, 6th edn. John Wiley and Sons, Inc.

  21. Stowe RA, Mayer RP (1966) Efficient screening of process variables. Ind Eng Chem 58(2):36–40

    Google Scholar 

  22. Dejaegher B, Capron X, Smeyers-Verbeke J, Vander Heyden Y (2006) Randomization tests to identify significant effects in experimental designs for robustness testing. Anal Chim Acta 564(2):184–200

    Google Scholar 

  23. No AMCTB, Committee AM (2013) Experimental design and optimization (4): Plackett-Burman designs. Anal Methods 5(8):1901–1903

    Google Scholar 

  24. Ali MY, Banu A, Shaffiq M, Rahman MA, Konneh M, Salehan M (2019) Investigation of taper angle in dry micro wire EDM. Int J Mech Eng Robot Res 8(1):725–728

    Google Scholar 

  25. Ali MY, Banu A, Salehan M, Adesta EYT, Hazza M, Shaffiq M (2018) Dimensional accuracy in dry micro wire electrical discharge machining. J Mech Eng Sci 12(1):3321–3329

    Google Scholar 

  26. Maher I, Sarhan AAD, Hamdi M (2015) Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining. Int J Adv Manuf Technol 76:329–351

    Google Scholar 

  27. Ndaliman MB, Khan AA, Ali MY, Wahid Z (2013) Determination of influential factors on EDMed surface properties using Plackett-Burman design. World Appl Sci J 21:88–93

    Google Scholar 

  28. Li Y (2014) Analysis of ion-enhanced field emission and field emission-driven microdischarges (doctor of philosophy’s dissertation). Notre Dame University, Notre Dame

    Google Scholar 

  29. Go DB, Pohlman DA (2010) A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps. J Appl Phys 107(10):103303

    Google Scholar 

  30. Macedo FTB, Wiessner M, Hollenstein C, Esteves PMB, Wegener K (2016) Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation. Int J Adv Manuf Technol:1–13

  31. Klas M, Matejcik S, Radjenovic B, Radmilovic-Radjenovic M (2011) Experimental and theoretical studies of the breakdown voltage characteristics at micrometer separations in air. EPL (Europhysics Letters) 95(3):35002

    MATH  Google Scholar 

  32. Dhariwal RS, Torres JM, Desmulliez MPY (2000) Electric field breakdown at micrometer separations in air and nitrogen at atmospheric pressure. IEE Proc Sci Meas Technol 147(5):261–265

    Google Scholar 

  33. Radmilovic-Radjenovic M, Radjenovic B (2017) The effect of the field emission on the breakdown voltage characteristics of nitrogen microdischarges. Int J Eng Innov Res 6(6):280–283

    Google Scholar 

  34. Wiessner M, Macedo FTB, Martendal CP, Kuster F, Wegener K (2018) Fundamental investigation of EDM plasmas, part I: a comparison between electric discharges in gaseous and liquid dielectric media. Procedia CIRP 68:330–335

    Google Scholar 

  35. Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Investigation of the fundamentals of tool electrode wear in dry EDM. Procedia CIRP 46:55–58

    Google Scholar 

  36. Tan X, Go DB (2018) Understanding the scaling of electron kinetics in the transition from collisional to collisionless conditions in microscale gas discharges. J Appl Phys 123(6):063303

    Google Scholar 

  37. Li Y, Tirumala R, Rumbach P, Go DB (2013) The coupling of ion-enhanced field emission and the discharge during microscale breakdown at moderately high pressures. IEEE Trans Plasma Sci 41(1):24–35

    Google Scholar 

  38. Radmilovic-Radjenovic M, Radjenovic B, Klas M, Bojarov A, Matejcik S (2013) The breakdown mechanisms in electrical discharges: the role of the field emission effect in direct current discharges in microgaps. Acta Physica Slovaca 63(3):105–205

    MATH  Google Scholar 

  39. Rumbach P, Go DB (2012) Fundamental properties of field emission-driven direct current microdischarges. J Appl Phys 112(10):103302

    Google Scholar 

  40. Rumbach P, Li Y, Martinez S, Twahirwa TJ, Go DB (2014) Experimental study of electron impact ionization in field emission-driven microdischarges. Plasma Sources Sci Technol 23(6):065026

    Google Scholar 

  41. Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Dependence of crater formation in dry EDM on electrical breakdown mechanism. Procedia CIRP 42:161–166

    Google Scholar 

  42. Munz M, Risto M, Haas R (2016) The phenomenon of polarity in EDM drilling process using water based dielectrics. Procedia CIRP 42:532–536

    Google Scholar 

  43. Roth R, Balzer H, Kuster F, Wegener K (2012) Influence of the anode material on the breakdown behavior in dry electrical discharge machining. Procedia CIRP 1:639–644

    Google Scholar 

  44. Jahan MP, Rahman M, Wong YS (2014) Micro-electrical discharge machining (micro-EDM): processes, varieties, and applications. In: Hashmi S, Batalha GF, Thyne CJV, Yilbas B (eds) Comprehensive Materials Processing, vol 11. Elsevier, pp 333–371

  45. Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259

    Google Scholar 

  46. Habib S, Okada A (2016) Experimental investigation on wire vibration during fine wire electrical discharge machining process. Int J Adv Manuf Technol 84(9–12):2265–2276

    Google Scholar 

  47. Patel VD, Patel DM, Patel UJ, Patel B, Butani N (2014) Review of wire-cut EDM process on titanium alloy. Int J Eng Res Appl 4(12):112–121

    Google Scholar 

  48. Xiaobing, F. (2013). Modelling and simulation of crater formation and wire vibration in micro WEDM (doctoral’s thesis). National University of Singapore, Singapore

  49. Tomura S, Kunieda M (2009) Analysis of electromagnetic force in wire-EDM. Precis Eng 33:255–262

    Google Scholar 

  50. Maradia, U. & Wegener, K. (2015). EDM modelling and simulation. In M. P. Jahan (Ed.). Electrical discharge machining (EDM) types, technologies and applications (pp. 67–121). New York: Nova Science Publishers, Inc.

  51. Liao YS, Chu YY, Yan MT (1997) Study of wire breaking process and monitoring of WEDM. Int J Mach Tools Manuf 37(4):555–567

    Google Scholar 

  52. Reyad M, Ali MY (2009) Investigation of machining parameters for multiple-response optimization of micro electrodischarge milling. Int J Adv Manuf Technol 43(3–4):264–275

    Google Scholar 

  53. Garg RK, Singh KK, Sachdeva A, Sharma VS, Ojha K, Singh S (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50(5–8):611–624

    Google Scholar 

  54. Florkowska B, Florkowski M, Roehrich J, Zydron P (2010) Partial discharge mechanism in a non-uniform electric field at higher pressure. IET Sci Meas Technol 5(2):59–66

    Google Scholar 

  55. Kuffel, E., Zaengl, W. S., & Kuffel, J. (2000). High voltage engineering fundamentals (2nd). Oxford: Butterworth-Heinemann

  56. Khademi A, Renani NG, Mofarrahi M, Jeddi AR, Yusof NM (2013) The best location for speed bump installation using experimental design methodology. Promet Traffic Transp 25(6):565–574

    Google Scholar 

  57. Le Man H, Behera SK, Park HS (2010) Optimization of operational parameters for ethanol production from Korean food waste leachate. Int J Environ Sci Technol 7(1):157–164

    Google Scholar 

  58. Bari MN, Alam MZ, Muyibi SA, Jamal P (2009) Improvement of production of citric acid from oil palm empty fruit branches: optimization of media by statistical experimental designs. Bioresour Technol 100(12):3113–3120

    Google Scholar 

  59. Omar WW, Nordin N, Mohamed M, Amin NAS (2009) A two-step biodesel production from waste cooking oil: optimization of pre-treatment step. J Appl Sci 9(17):3098–3103

    Google Scholar 

  60. Banu A, Bakar MA, Ali MY, Adesta EY (2017) Analysis of WEDM process parameters on surface roughness and kerf using Taguchi method. Int J Eng Mater Manuf 2(4):103–109

    Google Scholar 

  61. Hoang KT, Yang SH (2015) Kerf analysis and control in dry micro-wire electrical discharge machining. Int J Adv Manuf Technol 78:1803–1812

    Google Scholar 

  62. Macedo FTB, Wiessner M, Bernardelli GC, Kuster F, Wegener K (2018) Fundamental investigation of EDM plasmas, part II: parametric analysis of electric discharges in gaseous dielectric medium. Procedia CIRP 68:336–341

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the faculty and staff of the Micromanufacturing laboratory and Metallographic laboratory at IIUM for their support.

Funding

This research was funded by MOSTI under Research Grant SF15-016-0066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yeakub Ali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, A., Ali, M.Y., Rahman, M.A. et al. Stability of micro dry wire EDM: OFAT and DOE method. Int J Adv Manuf Technol 106, 4247–4261 (2020). https://doi.org/10.1007/s00170-020-04923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-04923-9

Keywords

Navigation