Skip to main content
Log in

Experimental study on shear thickening polishing of cemented carbide insert with complex shape

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Shear thickening polishing (STP), an emerging polishing method, is used to polish the cemented carbide insert with complex shape in this study. The principle and performance of STP were introduced. Four parameters having significant influence on the STP process, including polishing speed, abrasive concentration, abrasive size, and inclination angle of fixture, were experimentally investigated. The influence of the four parameters on the surface quality of cemented carbide insert was analyzed by orthogonal experiment method, and the optimal processing parameter combination for the STP of cemented carbide insert was determined. Although the influence degree of the processing parameter on the left cutting edge PA, the top cutting edge PB, the root cutting edge PD, and the right cutting edge PK was different, the optimal processing parameter combination for each position was the same: polishing speed of 90 rpm, abrasive concentration of 9 wt%, abrasive size of #8000, and inclination angle of 4°. Under the optimal processing parameter combination, the surface roughness of cemented carbide insert at the left cutting edge PA was reduced from 121.8 to 7.1 nm after 15 min polishing. The scanning electron microscopy (SEM) and the white light interferometer confirmed the effectiveness of the STP process in the polishing of cemented carbide insert. The experimental results show that STP was a promising and feasible processing method in the polishing of cemented carbide insert with complex shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fulemova J, Janda Z (2014) Influence of the cutting edge radius and the cutting edge preparation on tool life and cutting forces at inserts with wiper geometry. Procedia Eng 69(1):565–573. https://doi.org/10.1016/j.proeng.2014.03.027

    Article  Google Scholar 

  2. Biermann D, Aßmuth R, Schumann S, Rieger M, Kuhlenkötter B (2016) Wet abrasive jet machining to prepare and design the cutting edge micro shape. Procedia CIRP 45:195–198. https://doi.org/10.1016/j.procir.2016.02.071

    Article  Google Scholar 

  3. Priarone PC, Rizzuti S, Settineri L, Vergnano G (2012) Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide. J Mater Process Technol 212(12):2619–2628. https://doi.org/10.1016/j.jmatprotec.2012.07.021

    Article  Google Scholar 

  4. Bouzakis KD, Charalampous P, Kotsanis T, Skordaris G, Bouzakis E, Denkena B, Breidenstein B, Aurich JC, Zimmermann M, Herrmann T, Saoubi RM (2017) Effect of HM substrates’ cutting edge roundness manufactured by laser machining and micro-blasting on the coated tools’ cutting performance. CIRP J Manuf Sci Technol 18:188–197. https://doi.org/10.1016/j.cirpj.2017.02.003

    Article  Google Scholar 

  5. Zhang S, Zou B, Liu YN, Wang YS, Huang CZ, Liu ZQ (2018) Edge passivation and quality of carbide cutting inserts treated by wet micro-abrasive blasting. Int J Adv Manuf Technol 96(5–8):2307–2318. https://doi.org/10.1007/s00170-018-1705-7

    Article  Google Scholar 

  6. Ventura CEH, Köhler J, Denkena B (2013) Cutting edge preparation of PCBN inserts by means of grinding and its application in hard turning. CIRP J Manuf Sci Technol 6(4):246–253. https://doi.org/10.1016/j.cirpj.2013.07.005

    Article  Google Scholar 

  7. Aurich JC, Effgen C, Kirsch B (2016) Cutting edge preparation with elastic bonded superabrasive grinding wheels. CIRP Ann 65(1):329–332. https://doi.org/10.1016/j.cirp.2016.04.093

    Article  Google Scholar 

  8. Bouzakis KD, Gerardis S, Skordaris G, Katirtzoglou G, Makrimallakis S, Klocke F, Bouzakis E (2009) Effect of dry micro-blasting on PVD-film properties, cutting edge geometry and tool life in milling. Surf Coat Technol 204(6–7):1081–1086. https://doi.org/10.1016/j.surfcoat.2009.07.018

    Article  Google Scholar 

  9. Karpuschewski B, Schmidt K, Beňo J, Maňková I, Prilukova J (2014) Measuring procedures of cutting edge preparation when hard turning with coated ceramics tool inserts. Measurement 55:627–640. https://doi.org/10.1016/j.measurement.2014.06.008

    Article  Google Scholar 

  10. Hu ZH, Qin C, Chen ZJ, Yang ZZ, Fang T, Mao MJ (2018) Experimental study of chemical mechanical polishing of the final surfaces of cemented carbide inserts for effective cutting austenitic stainless steel. Int J Adv Manuf Technol 95(9–12):4129–4140. https://doi.org/10.1007/s00170-017-1493-5

    Article  Google Scholar 

  11. Fu YZ, Wang XP, Gao H, Wei HB, Li SC (2016) Blade surface uniformity of blisk finished by abrasive flow machining. Int J Adv Manuf Technol 84(5–8):1725–1735. https://doi.org/10.1007/s00170-015-8270-0

    Google Scholar 

  12. Cheung FY, Zhou ZF, Geddam A, Li KY (2008) Cutting edge preparation using magnetic polishing and its influence on the performance of high-speed steel drills. J Mater Process Technol 208(1–3):196–204. https://doi.org/10.1016/j.jmatprotec.2007.12.108

    Article  Google Scholar 

  13. Mirjavadi SS, Alipour M, Hamouda AMS, Matin A, Kord S, Afshari BM, Koppad PG (2017) Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites. J Alloys Compd 726:1262–1273. https://doi.org/10.1016/j.jallcom.2017.08.084

    Article  Google Scholar 

  14. Hoseinlaghab S, Mirjavadi SS, Sadeghian N, Jalili I, Azarbarmas M, Givi MKB (2015) Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Mater Des 67(5):369–378. https://doi.org/10.1016/j.matdes.2014.11.039

  15. Mirjavadi SS, Alipour M, Emamian S, Kord S, Hamouda AMS, Koppad PG, Keshavamurthy R (2017) Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance. J Alloys Compd 712:795–803. https://doi.org/10.1016/j.jallcom.2017.04.114

    Article  Google Scholar 

  16. Petel OE, Hogan JD (2016) An investigation of shear thickening fluids using ejecta analysis techniques. Int J Impact Eng 93:39–48. https://doi.org/10.1016/j.ijimpeng.2016.02.001

    Article  Google Scholar 

  17. Galindo-Rosales FJ, Rubio-Hernández FJ, Sevilla A, Ewoldt RH (2011) How Dr. Malcom M. Cross may have tackled the development of “An apparent viscosity function for shear thickening fluids”. J Non-Newtonian Fluid Mech 166(23–24):1421–1424. https://doi.org/10.1016/j.jnnfm.2011.08.008

    Article  MATH  Google Scholar 

  18. Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans Soc Rheol 16(1):155–173. https://doi.org/10.1122/1.549250

    Article  Google Scholar 

  19. Melrose JR, Ball RC (2004) Continuous shear thickening transitions in model concentrated colloids—the role of interparticle forces. J Rheol 48(5):937–960. https://doi.org/10.1122/1.1784783

    Article  Google Scholar 

  20. Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech 155:105–129. https://doi.org/10.1017/S0022112085001732

    Article  Google Scholar 

  21. Cheng X, McCoy JH, Israelachvili JN, Cohen I (2011) Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333(6047):1276–1279. https://doi.org/10.1126/science.1207032

    Article  Google Scholar 

  22. Brown E, Jaeger HM (2014) Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep Prog Phys 77(4):046602. https://doi.org/10.1088/0034-4885/77/4/046602

    Article  Google Scholar 

  23. Laha A, Majumdar A (2016) Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials. Mater Des 89:286–293. https://doi.org/10.1016/j.matdes.2015.09.077

    Article  Google Scholar 

  24. Zhang XZ, Li WH, Gong XL (2008) The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater Struct 17(3):035027. https://doi.org/10.1088/0964-1726/17/3/035027

    Article  Google Scholar 

  25. Li M, Lyu BH, Yuan JL, Yao WF, Zhou FF, Zhong MP (2016) Evolution and equivalent control law of surface roughness in shear-thickening polishing. Int J Mach Tools Manuf 108:113–126. https://doi.org/10.1016/j.ijmachtools.2016.06.007

    Article  Google Scholar 

  26. Crawford NC, Williams SKR, Boldridge D, Liberatore MW (2012) Shear thickening of chemical mechanical polishing slurries under high shear. Rheol Acta 51(7):637–647. https://doi.org/10.1007/s00397-012-0636-8

    Article  Google Scholar 

  27. Span J, Koshy P, Klocke F, Müller S, Coelho R (2017) Dynamic jamming in dense suspensions: surface finishing and edge honing applications. CIRP Ann 66(1):321–324. https://doi.org/10.1016/j.cirp.2017.04.082

    Article  Google Scholar 

  28. Lyu BH, Dong CC, Yuan JL, Sun L, Li M, Dai WT (2017) Experimental study on shear thickening polishing method for curved surface. Int J Nanomanufacturing 13(1):81–95. https://doi.org/10.1504/IJNM.2017.082413

    Article  Google Scholar 

  29. Li M, Lyu BH, Yuan JL, Dong CC, Dai WT (2015) Shear-thickening polishing method. Int J Mach Tools Manuf 94:88–99. https://doi.org/10.1016/j.ijmachtools.2015.04.010

    Article  Google Scholar 

  30. Gürgen S, Li W, Kuşhan MC (2016) The rheology of shear thickening fluids with various ceramic particle additives. Mater Des 104:312–319. https://doi.org/10.1016/j.matdes.2016.05.055

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Zhejiang Province (No. LR17E050002) and the National Natural Science Foundation of China (No. U1401247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Lyu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, B.H., He, Q.K., Chen, S.H. et al. Experimental study on shear thickening polishing of cemented carbide insert with complex shape. Int J Adv Manuf Technol 103, 585–595 (2019). https://doi.org/10.1007/s00170-019-03600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03600-w

Keywords

Navigation