Skip to main content
Log in

A thermal model for hard precision turning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work presents a developed thermal model of hard precision turning, in which the depth of the cut is made to be considerably smaller than the tool nose radius for final finishing. The required input data for this model was extracted from a previously published mechanistic model of precision turning. This mechanistic model is based on Merchant’s analysis of 3D cutting, which was modified to adopt the precision turning operation. Calculations were obtained of the shear plane temperature rise at the primary deformation zone and the temperature rise of the chip due to the work done in overcoming friction at the secondary deformation zone (frictional temperature rise). The thermophysical properties of the workpiece and cutting tool materials as well as their variation under different shear plane and frictional temperatures were considered. After performing the required calibrations, the cutting temperatures were measured with the tool-workpiece thermocouple technique during machining of hardened HSS and D2 tool steel by PCBN and mixed alumina ceramic tools. The occurrence of secondary hardening during HSS machining was found to be dependent on the thermal conductivity of the tool material. The estimated cutting temperatures were found to be reasonably close to the measured ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Komanduri R (1993) Machining and grinding—a historical review of classical papers. Appl Mech Rev 46:80–132. https://doi.org/10.1115/1.3121404

    Article  Google Scholar 

  2. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  3. Baohai W, Di C, Xiaodong H, Dinghua Z, Kai T (2016) Cutting tool temperature prediction method using analytical model for end milling. Chin J Aeronaut 29(6):1788–1794. https://doi.org/10.1016/j.cja.2016.03.011

    Article  Google Scholar 

  4. Ng EG, Aspinwall DK (2002) The effect of workpiece hardness and cutting speed on the machinability of AISI H13 hot work die steel when using PCBN tooling. J Manuf Sci Eng 124(3):588–594. https://doi.org/10.1115/1.1452749

    Article  Google Scholar 

  5. Kikuchi M (2009) The use of cutting temperature to evaluate the machinability of titanium alloys. Acta Biomater 5:770–775. https://doi.org/10.1016/j.actbio.2008.08.016

    Article  Google Scholar 

  6. Díaz-Álvarez J, Cantero JL, Miguélez H, Soldani X (2014) Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718. Int J Mech Sci 82:161–169. https://doi.org/10.1016/j.ijmecsci.2014.03.010

    Article  Google Scholar 

  7. Devillez A, Le CG, Dominiak S, Dudzinski D (2011) Dry machining of Inconel 718, workpiece surface integrity. J Mater Process Technol 211:1590–1598. https://doi.org/10.1016/j.jmatprotec.2011.04.011

    Article  Google Scholar 

  8. Díaz-Álvarez J, Tapetado A, Vázquez C, Miguélez H (2017) Temperature measurement and numerical prediction in machining Inconel 718. Sensors 17:1531. https://doi.org/10.3390/s17071531

    Article  Google Scholar 

  9. Tönshoff HK, Arendt C, Ben Amor R (2000) Cutting of hardened steels. Ann CIRP 49(2):547–566. https://doi.org/10.1016/S0007-8506(07)63455-6

    Article  Google Scholar 

  10. Shalaby MA, El Hakim MA, Abdelhameed MM, Krzanowski JE, Veldhuis SC, Dosbaeva GK (2014) Wear mechanisms of several cutting tool materials in hard turning of high carbon–chromium tool steel. Tribol Int 70:148–154. https://doi.org/10.1016/j.triboint.2013.10.011

    Article  Google Scholar 

  11. Fox-Rabinovich G, Gershman I, Yamamoto K, Aguirre M, Covelli D, Arif T, Aramesh M, Shalaby M, Veldhuis S (2017) Surface/interface phenomena in nanomultilayer coating under severing tribological conditions. Surf Interface Anal 49(7):584–593. https://doi.org/10.1002/sia.6196

    Article  Google Scholar 

  12. Ren XJ, Yang QX, James RD, Wang L (2004) Cutting temperatures in hard turning chromium hardfacings with PCBN tooling. J Mater Process Technol 147(1):38–44. https://doi.org/10.1016/j.jmatprotec.2003.10.013

    Article  Google Scholar 

  13. Battaglia JL, Puigsegur L, Cahuc O (2005) Estimated temperature on a machined surface using an inverse approach. Exp Heat Transf 18(1):13–32. https://doi.org/10.1080/08916150590884826

    Article  Google Scholar 

  14. Leshock CE, Shin YC (1997) Investigation on cutting temperature in turning by a tool work thermocouple technique. J Manuf Sci Eng 119(4A):502–508. https://doi.org/10.1115/1.2831180

    Article  Google Scholar 

  15. Anagonye AU, Stephenson DA (2002) Modeling cutting temperatures for turning inserts with various tool geometries and materials. J Manuf Sci Eng 124(3):544–552. https://doi.org/10.1115/1.1461838

    Article  Google Scholar 

  16. Bono M, Ni J (2002) A method for measuring the temperature distribution along the cutting edges of a drill. J Manuf Sci Eng 124(4):921–923. https://doi.org/10.1115/1.1511525

    Article  Google Scholar 

  17. Ueda T, Al Huda M, Yamada K, Nakayama K, Kudo H (1999) Temperature measurement of CBN tool in turning of high hardness steel. CIRP Ann Manuf Technol 48(1):63–66. https://doi.org/10.1016/S0007-8506(07)63132-1

    Article  Google Scholar 

  18. Al Huda M, Yamada K, Hosokawa A, Ueda T (2002) Investigation of temperature at tool-chip interface in turning using two-color pyrometer. J Manuf Sci Eng 124(2):200–207. https://doi.org/10.1115/1.1455641

    Article  Google Scholar 

  19. Komanduri R, Hou ZB (2001) A review of the experimental techniques for measurements of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34:653–682. https://doi.org/10.1016/S0301-679X(01)00068-8

    Article  Google Scholar 

  20. Stephenson DA (1993) Tool-work thermocouple temperature measurements—theory and implementation issue. Transactions of the ASME, J Eng Ind-T Asme 115:432–437. https://doi.org/10.1115/1.2901786.20

  21. Stephenson DA (1991) Assessment of steady-state metal cutting temperature models based on simultaneous infrared and thermocouple data. J Eng Ind 113(2):121–128. https://doi.org/10.1115/1.2899668

    Article  Google Scholar 

  22. Stephenson DA, Agapiou JS (1997) Metal cutting theory and practice. Marcel Dekker, New York

    Google Scholar 

  23. Chen G, Ren C, Zhang P, Cui K, Li Y (2013) Measurement and finite element simulation of micro-cutting temperatures of tool tip and workpiece. Int J Mach Tool Manu 75:16–26. https://doi.org/10.1016/j.ijmachtools.2013.08.005

    Article  Google Scholar 

  24. Maier T, Zaeh MF (2012) Modeling of the thermomechanical process effects on machine tool structures. Procedia CIRP 4:73–78. https://doi.org/10.1016/j.procir.2012.10.014

    Article  Google Scholar 

  25. Nieslony P, Grzesik W, Laskowski P, Habrat W (2013) FEM-based modelling of the influence of thermophysical properties of work and cutting tool materials on the process performance. Procedia CIRP 8:3–8. https://doi.org/10.1016/j.procir.2013.06.056

    Article  Google Scholar 

  26. Filice L, Umbrello D, Beccari S, Micari F (2006) On the FE codes capability for tool temperature calculation in machining processes. J Mater Process Technol 174:286–292. https://doi.org/10.1016/j.jmatprotec.2006.01.012

    Article  Google Scholar 

  27. Umbrello D, Filice L, Rizzuti S, Micari F, Settineri L (2007) On the effectiveness of finite element simulation of orthogonal cutting with particular reference to temperature prediction. J Mater Process Technol 189(1–3):284–291. https://doi.org/10.1016/j.jmatprotec.2007.01.038

    Article  MATH  Google Scholar 

  28. Komanduri R, Hou ZB (2000) Thermal modeling of the metal cutting process—part I: temperature rise distribution due to shear plane heat source. Int J Mech Sci 42(9):1715–1752. https://doi.org/10.1016/S0020-7403(99)00070-3

    Article  MATH  Google Scholar 

  29. Komanduri R, Hou ZB (2001) Thermal modeling of the metal cutting process—part II: temperature rise distribution due to frictional heat source at the tool-chip interface. Int J Mech Sci 43(1):57–88. https://doi.org/10.1016/S0020-7403(99)00104-6

    Article  MATH  Google Scholar 

  30. Moufki A, Molinari A, Dudzinski D (1998) Modeling of orthogonal cutting with a temperature dependent friction law. J Mech Phys Solids 46(10):2103–2138. https://doi.org/10.1016/S0022-5096(98)00032-5

  31. Bahi S, Nouari M, Moufki A, El Mansori M, Molinari A (2011) A new friction law for sticking and sliding contacts in machining. Tribol Int 44(7–8):764–771. https://doi.org/10.1016/j.triboint.2011.01.007

    Article  Google Scholar 

  32. Zhou F, Wang X, Hu Y, Ling L (2013) Modeling temperature of non-equidistant primary shear zone in metal cutting. Int J Therm Sci 73:38–45. https://doi.org/10.1016/j.ijthermalsci.2013.05.014

    Article  Google Scholar 

  33. Li L, Li B, Ehmann KF, Li X (2013) A thermo-mechanical model of dry orthogonal cutting and its experimental validation through embedded micro-scale thin film thermocouple arrays in PCBN tooling. Int J Mach Tools Manuf 70:70–87. https://doi.org/10.1016/j.ijmachtools.2013.03.005

    Article  Google Scholar 

  34. Shaw MC (2005) Metal cutting principles. Oxford University Press, New York

    Google Scholar 

  35. Polvorosa R, Suárez A, de Lacalle LNL, Cerrillo I, Wretland A, Veiga F (2017) Tool wear on nickel alloys with different coolant pressures: comparison of Alloy 718 and Waspalloy. J Manuf Process 26:44–56. https://doi.org/10.1016/j.jmapro.2017.01.012

    Article  Google Scholar 

  36. Byrne G, Scholta E (1993) Environmentally clean machining processes—a strategic approach. CIRP Ann 42:471–474. https://doi.org/10.1016/S0007-8506(07)62488-3

    Article  Google Scholar 

  37. Dudzinski D, Devillez A, Moufki A, Larrouquère D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 44:439–456. https://doi.org/10.1016/S0890-6955(03)00159-7

    Article  Google Scholar 

  38. Canteli J, Cantero JL, Marín NC, Gómez B, Gordo E, Miguélez MH (2010) Cutting performance of TiCN-HSS cermet in dry machining. J Mater Process Technol 210:122–128. https://doi.org/10.1016/j.jmatprotec.2009.08.003

    Article  Google Scholar 

  39. Shalaby MA, El Hakim MA, Veldhuis SC, Dosbaeva GK (2017) An investigation into the behavior of the cutting forces in precision turning. Int J Adv Manuf Technol 90(5–8):1605–1615. https://doi.org/10.1007/s00170-016-9465-8

    Article  Google Scholar 

  40. El Hakim MA, Shalaby MA, Veldhuis SC, Dosbaev GK (2015) Effect of secondary hardening on cutting forces, cutting temperature, and tool wear in hard turning of high alloy tool steels. Measurement 65:233–238. https://doi.org/10.1016/j.2014.12.033

    Article  Google Scholar 

  41. Abukhshim NA, Mativenga PT, Sheikh MA (2004) An investigation of the tool–chip contact length and wear in high-speed turning of EN19 steel. Proc Inst Mech Eng B J Eng Manuf 218:889–903. https://doi.org/10.1243/0954405041486064

    Article  Google Scholar 

  42. Aleksandrovich AB, Danilenko BD, Loshchinin YV, Kolyadina TA, Khatsinskaya IM (1988) Thermophysical properties of low alloy high-speed steels. Metal Science and Heat Treatment 30(7):502–504. https://doi.org/10.1007/BF00777438

    Article  Google Scholar 

  43. El Hakim M, Abad M, Abdelhameed M, Shalaby M, Veldhuis S (2011) Wear behavior of some cutting tool materials in hard turning of HSS. Tribol Int 44:1174–1181. https://doi.org/10.1016/j.triboint.2011.05.018

  44. Dosbaeva GK, El Hakim MA, Shalaby MA, Krzanowski JE, Veldhuis SC (2015) Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. Int J Refract Metals Hard Mater 50:1–8. https://doi.org/10.1016/j.ijrmhm.2014.11.001

Download references

Funding

This work was carried out at the Machining Research Laboratory, Faculty of Engineering, Ain Shams University, Cairo, Egypt. It was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) under the Canadian Network for Research and Innovation in Machining Technology (CANRIMT) Strategic Research Network Grant NETGP 479639-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shalaby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M.A., El Hakim, M.A. & Veldhuis, S.C. A thermal model for hard precision turning. Int J Adv Manuf Technol 98, 2401–2413 (2018). https://doi.org/10.1007/s00170-018-2389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2389-8

Keywords

Navigation