Skip to main content
Log in

A review on laser beam welding of titanium alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In recent years, there is an increased in used of titanium alloys for some parts of mass-produced automobiles and aerospace. However, titanium alloys are characterized by difficult machinability, high melting temperature, high strength, low thermal conductivity, and high reactivity to oxygen, which overshadowed conventional manufacturing processes. To this end, there is a pressing need for more efficient technologies for the manufacture of low-cost titanium structures. Over the years, several joining techniques have been considered for fabrication of titanium alloys. Nevertheless, laser beam welding presents a viable option for welding of titanium due its versatility, high specific heat input, and flexibility. To date, under optimum processing conditions, the strength of the laser-welded titanium alloys can be close to the original material; however, there are still some processing problems such as lower elongation and corrosion resistance coupled with inferior fatigue properties. In this document, the laser beam welding of similar and dissimilar titanium alloys is reviewed, focusing on the influence of the processing parameters, microstructure-property relationship, metallurgical defects, and possible remedies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International A, CommitteeAIH, CommitteeAIAPD (1990) Metals handbook: properties and selection, vol 2. Asm International

  2. Mordike B, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng A 302(1):37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  3. FujiiH, TakahashiK, YamashitaY (2003) Application of titanium and its alloys for automobile parts. Shinnittetsu giho:62-67

  4. Manladan S, Yusof F, Ramesh S, Fadzil M (2016) A review on resistance spot welding of magnesium alloys. Int J Adv Manuf Technol 86(5-8):1805–1825

    Article  Google Scholar 

  5. Baqer YM, Ramesh S, Yusof F, Manladan S (2018) Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys. Int J Adv Manuf Technol 1-17

  6. Baeslack W, Becker D, Froes F (1984) Advances in titanium alloy welding metallurgy. JOM 36(5):46–58. https://doi.org/10.1007/BF03338455

    Article  Google Scholar 

  7. Shi YW, Zhong F, Li XY, Gong SL, Chen L (2007) Effect of laser beam welding on fracture toughness of a Ti-6.5Al-2Zr-1Mo-1V alloy sheet. J Mater Sci 42(16):6651–6657. https://doi.org/10.1007/s10853-007-1524-y

    Article  Google Scholar 

  8. Liu LM, Hao XF, Du X (2008) Microstructure characteristics and mechanical properties of laser-TIG hybrid welding joint of TA15 titanium alloy. Mater Res Innov 12(3):114–118. https://doi.org/10.1179/143307508x333703

    Article  Google Scholar 

  9. Lee H-S, Yoon J-H, Yi Y-M (2007) Oxidation behavior of titanium alloy under diffusion bonding. Thermochimica Acta 455(1):105–108. https://doi.org/10.1016/j.tca.2006.12.004

    Article  Google Scholar 

  10. Costa A, Miranda R, Quintino L, Yapp D (2007) Analysis of beam material interaction in welding of titanium with fiber lasers. Mater Manuf Process 22(7-8):798–803. https://doi.org/10.1080/10426910701446671

    Article  Google Scholar 

  11. Kumar C, Das M, Paul CP, Singh B (2017) Experimental investigation and metallographic characterization of fiber laser beam welding of Ti-6Al-4V alloy using response surface method. Opt Laser Eng 95:52–68. https://doi.org/10.1016/j.optlaseng.2017.03.013

    Article  Google Scholar 

  12. Donachie MJ (2000) Titanium: a technical guide. ASM international

  13. Gao XL, Zhang LJ, Liu J, Zhang JX (2013) A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate. Mater Sci Eng A Struct 559:14–21. https://doi.org/10.1016/j.msea.2012.06.016

    Article  Google Scholar 

  14. Balasubramanian T, Balasubramanian V, Manickam MM (2011) Fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti–6Al–4V alloy. Mater Design 32(8):4509–4520. https://doi.org/10.1016/j.matdes.2011.03.025

    Article  Google Scholar 

  15. Balasubramanian TS, Balasubramanian V, Muthumanikkam MA (2011) Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints. J Mater Eng Perform 20(9):1620–1630. https://doi.org/10.1007/s11665-010-9822-y

    Article  Google Scholar 

  16. Yunlian Q, Ju D, Quan H, Liying Z (2000) Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater Sci Eng A 280(1):177–181. https://doi.org/10.1016/S0921-5093(99)00662-0

    Article  Google Scholar 

  17. Zhang L, Gao X, Sun M, Zhang J (2014) Weld outline comparison between various pulsed Nd: YAG laser welding and pulsed Nd: YAG laser–TIG arc welding. Int J Adv Manuf Technol 75(1-4):153–160. https://doi.org/10.1007/s00170-014-6122-y

    Article  Google Scholar 

  18. Zhang JX, Xue Y, Gong SL (2005) Residual welding stresses in laser beam and tungsten inert gas weldments of titanium alloy. Sci Technol Weld Join 10(6):643–646. https://doi.org/10.1179/174329305x48374

    Article  Google Scholar 

  19. Kumar C, Das M, Biswas P (2015) A 3-D finite element analysis of transient temperature profile of laser welded Ti-6Al-4V alloy. Lasers Based Manuf:421–440. https://doi.org/10.1007/978-81-322-2352-8_21

  20. Auwal ST, Ramesh S, Yusof F, Manladan SM (2018) A review on laser beam welding of copper alloys. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-1566-5

  21. Zhan XH, Peng QY, Wei YH, Ou WM (2017) Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints. Opt Laser Technol 94:279–289. https://doi.org/10.1016/j.optlastec.2017.03.014

    Article  Google Scholar 

  22. Caiazzo F, Curcio F, Daurelio G, Minutolo FMC (2004) Ti6Al4V sheets lap and butt joints carried out by CO2 laser: mechanical and morphological characterization. J Mater Process Technol 149(1):546–552. https://doi.org/10.1016/j.jmatprotec.2003.12.026

    Article  Google Scholar 

  23. Akman E, Demir A, Canel T, Sinmazcelik T (2009) Laser welding of Ti6Al4V titanium alloys. J Mater Process Technol 209(8):3705–3713. https://doi.org/10.1016/j.jmatprotec.2008.08.026

    Article  Google Scholar 

  24. Chamanfar A, Pasang T, Ventura A, Misiolek WZ (2016) Mechanical properties and microstructure of laser welded Ti-6Al-2Sn-4Zr-2Mo (Ti6242) titanium alloy. Mat Sci Eng A Struct 663:213–224. https://doi.org/10.1016/j.msea.2016.02.068

    Article  Google Scholar 

  25. Lisiecki A (2013) Welding of titanium alloy by Disk laser. Laser Technology 2012: Applications of Lasers 8703. Artn 87030t, https://doi.org/10.1117/12.2013431

  26. Aleksander APL (2012) Laser welding of titanium alloy Ti6Al4V using a disk laser. MTM J 7:53–56

    Google Scholar 

  27. Caiazzo F, Alfieri V, Fierro I, Sergi V (2014) Investigation and optimization of disk-laser welding of 1 mm thick Ti-6al-4v titanium alloy sheets. Proceedings of the Asme 9th International Manufacturing Science and Engineering Conference, 2014, vol 2

  28. Tsay L, Shan Y-P, Chao Y-H, Shu W (2006) The influence of porosity on the fatigue crack growth behavior of Ti–6Al–4V laser welds. J Mater Sci 41(22):7498–7505. https://doi.org/10.1007/s10853-006-0833-x

    Article  Google Scholar 

  29. Li X, Xie J, Zhou Y (2005) Effects of oxygen contamination in the argon shielding gas in laser welding of commercially pure titanium thin sheet. J Mater Sci 40(13):3437–3443. https://doi.org/10.1007/s10853-005-0447-8

    Article  Google Scholar 

  30. Blackburn J, Allen C, Hilton P, Li L (2010) Nd:YAG laser welding of titanium alloys using a directed gas jet. J Laser Appl 22(2):71–78. https://doi.org/10.2351/1.3455825

    Article  Google Scholar 

  31. Lei ZL, Dong ZJ, Chen YB, Zhang J, Zhu RC (2013) Microstructure and tensile properties of laser beam welded Ti-22Al-27Nb alloys. Mater Design 46:151–156. https://doi.org/10.1016/j.matdes.2012.10.022

    Article  Google Scholar 

  32. Caiazzo F, Alfieri V, Fierro I, Sergi V (2015) Investigation and optimization of disk-Llaser welding of 1 mm thick Ti-6Al-4V titanium alloy sheets. Adv Mech Eng 7(1):Artn 373561. https://doi.org/10.1155/2014/373561

    Article  Google Scholar 

  33. Fomin F, Ventzke V, Dorn F, Levichev N, Kashaev N (2017) Effect of microstructure transformations on fatigue properties of laser beam welded Ti-6Al-4V butt joints subjected to postweld heat treatment. In: Study of grain boundary character. InTech

  34. Cao X, Jahazi M (2009) Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser. Opt Laser Eng 47(11):1231–1241

    Article  Google Scholar 

  35. Zhang Y, Sun DQ, Gu XY, Liu YJ (2017) Nd/YAG pulsed laser welding of TC4 titanium alloy to 301L stainless steel via pure copper interlayer. Int J Adv Manuf Tech 90(1-4):953–961. https://doi.org/10.1007/s00170-016-9453-z

    Article  Google Scholar 

  36. Chen Y, Chen S, Li L (2010) Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding–brazing. Mater Design 31(1):227–233. https://doi.org/10.1016/j.matdes.2009.06.029

    Article  Google Scholar 

  37. Tan CW, Lu QS, Chen B, Song XG, Li LQ, Feng JC, Wang Y (2017) Influence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys. Opt Laser Technol 89:156–167. https://doi.org/10.1016/j.optlastec.2016.10.014

    Article  Google Scholar 

  38. Amaya-Vazquez M, Sánchez-Amaya J, Boukha Z, Botana F (2012) Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser. Corros Sci 56:36–48. https://doi.org/10.1016/j.corsci.2011.11.006

    Article  Google Scholar 

  39. Squillace A, Prisco U, Ciliberto S, Astarita A (2012) Effect of welding parameters on morphology and mechanical properties of Ti–6Al–4V laser beam welded butt joints. J Mater Process Technol 212(2):427–436. https://doi.org/10.1016/j.jmatprotec.2011.10.005

    Article  Google Scholar 

  40. Tsay L-W, Hsu C-L, Chen C (2010) The influence of microstructures on the notched tensile fracture of Ti–6Al–6V–2Sn welds at elevated temperatures. Isij Int 50(1):128–132. https://doi.org/10.2355/isijinternational.50.128

    Article  Google Scholar 

  41. Wang S, Wei M, Tsay L (2003) Tensile properties of LBW welds in Ti–6Al–4V alloy at evaluated temperatures below 450 C. Mater Lett 57(12):1815–1823

    Article  Google Scholar 

  42. Nakai M, Niinomi M, Akahori T, Hayashi K, Itsumi Y, Murakami S, Oyama H, Abe W (2012) Microstructural factors determining mechanical properties of laser-welded Ti-4.5Al-2.5Cr-1.2Fe-0.1C alloy for use in next-generation aircraft. Mat Sci Eng A Struct 550:55–65. https://doi.org/10.1016/j.msea.2012.04.022

    Article  Google Scholar 

  43. Blackburn J, Allen C, Hilton P, Li L, Hoque M, Khan A (2010) Modulated Nd: YAG laser welding of Ti–6Al–4V. Sci Technol Weld Join 15(5):433–439. https://doi.org/10.1179/136217110X12731414739718

    Article  Google Scholar 

  44. Gao X-L, Zhang L-J, Liu J, Zhang J-X (2014) Porosity and microstructure in pulsed Nd: YAG laser welded Ti6Al4V sheet. J Mater Process Technol 214(7):1316–1325. https://doi.org/10.1016/j.jmatprotec.2014.01.015

    Article  Google Scholar 

  45. Balasubramanian T, Balakrishnan M, Balasubramanian V, Manickam MM (2011) Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints. Trans Nonferrous Metals Soc China 21(6):1253–1262. https://doi.org/10.1016/S1003-6326(11)60850-9

    Article  Google Scholar 

  46. Lisiecki A (2012) Welding of titanium alloy by different types of lasers. Arch Mater Sci Eng 58(2):209–218

    Google Scholar 

  47. Caiazzo F, Cardaropoli F, Alfieri V, Sergi V, Argenio P, Barbieri G (2017) Disk-laser welding of Ti-6Al-4V titanium alloy plates in T-joint configuration.17th International Conference on Sheet Metal (Shemet17) 183:219-226. https://doi.org/10.1016/j.proeng.2017.04.024

  48. Liu H, Nakata K, Yamamoto N, Liao J (2011) Mechanical properties and strengthening mechanisms in laser beam welds of pure titanium. Sci Technol Weld Join 16(7):581–585. https://doi.org/10.1179/1362171811Y.0000000054

    Article  Google Scholar 

  49. Liu H, Nakata K, Yamamoto N, Liao J (2012) Microstructural characteristics and mechanical properties in laser beam welds of Ti6Al4V alloy. J Mater Sci 47(3):1460–1470. https://doi.org/10.1007/s10853-011-5931-8

    Article  Google Scholar 

  50. Li C, Li B, Wu ZF, Qi XY, Ye B, Wang AH (2017) Stitch welding of Ti-6Al-4V titanium alloy by fiber laser. Trans Nonferrous Metals Soc China 27(1):91–101. https://doi.org/10.1016/S1003-6326(17)60010-4

    Article  Google Scholar 

  51. Evtihiev NN, Grezev NV, Markushov YV, Murzakov MA (2016) Fiber lasers application for welding of titanium alloys with 16 mm thickness. Ii Conference on Plasma & Laser Research and Technologies 747. Unsp 012061, https://doi.org/10.1088/1742-6596/747/1/012061

  52. Campanelli SL, Casalino G, Mortello M, Angelastro A, Ludovico AD (2015) Microstructural characteristics and mechanical properties of Ti6Al4V alloy fiber laser welds. Procedia CIRP 33:428–433

    Article  Google Scholar 

  53. Cao X, Jahazi M, Immarigeon J, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Technol 171(2):188–204

    Article  Google Scholar 

  54. Mueller S, Bratt C, Mueller P, Cuddy J, Shankar K (2008) Laser beam welding of titanium—a comparison of CO2 and fiber laser for potential aerospace applications. In: Proceedings of ICALEO 2008: 27th International Congress on Applications of Lasers and Electro-Optics, pp 846-854

  55. Caiazzo F, Alfieri V, Corrado G, Cardaropoli F, Sergi V (2013) Investigation and optimization of laser welding of Ti-6Al-4 V titanium alloy plates. J Manuf Sci E-T ASME 135(6):Unsp 061012. https://doi.org/10.1115/1.4025578

    Article  Google Scholar 

  56. Giesen A, Speiser J (2007) Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J Select Top Quantum Electron 13(3):598–609

    Article  Google Scholar 

  57. Bharti A (1988) Laser welding. Bull Mater Sci 11(2):191–212. https://doi.org/10.1007/BF02744554

    Article  Google Scholar 

  58. Zhao Y, Huang J, Zhao Y, Wu YX (2011) Microstructure and mechanical properties of laser welded lap joints of Ti-6Al-4V alloy. Adv Mater Process Pts 1-3 311-313:2375-2378. https://doi.org/10.4028/www.scientific.net/AMR.311-313.2375

  59. Sun Z, Pan D, Zhang W (2002) Correlation between welding parameters and microstructures in TIG, plasma and laser welded Ti-6 Al-4 V alloy. In: 6th International Conference: trends in welding research, pp 760-767

  60. Ahn J, Chen L, Davies C, Dear J (2016) Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti–6Al–4V. Opt Laser Eng 86:156–171. https://doi.org/10.1016/j.optlaseng.2016.06.002

    Article  Google Scholar 

  61. Liu J, Watanabe I, Yoshida K, Atsuta M (2002) Joint strength of laser-welded titanium. Dent Mater 18(2):143–148. https://doi.org/10.1016/S0109-5641(01)00033-1

    Article  Google Scholar 

  62. Junaid M, Khan FN, Rahman K, Baig MN (2017) Effect of laser welding process on the microstructure, mechanical properties and residual stresses in Ti-5Al-2.5 Sn alloy. Opt Laser Technol

  63. Hilton P, Blackburn J, Chong P (2007) Welding of Ti-6Al-4V with fibre delivered laser beams. In: Proceedings of ICALEO, pp 887-895

  64. Kabir ASH, Cao X, Gholipour J, Wanjara P, Cuddy J, Birur A, Medraj M (2012) Effect of postweld heat treatment on microstructure, hardness, and tensile properties of laser-welded Ti-6Al-4V. Metall Mater Trans A 43(11):4171–4184. https://doi.org/10.1007/s11661-012-1230-5

    Article  Google Scholar 

  65. Buddery A, Kelly P, Drennan J, Dargusch M (2011) The effect of contamination on the metallurgy of commercially pure titanium welded with a pulsed laser beam. J Mater Sci 46(8):2726–2732. https://doi.org/10.1007/s10853-010-5145-5

    Article  Google Scholar 

  66. Lee H-K, Han H-S, Son K-J, Hong S-B (2006) Optimization of Nd: YAG laser welding parameters for sealing small titanium tube ends. Mater Sci Eng A 415(1):149–155. https://doi.org/10.1016/j.msea.2005.09.059

    Article  Google Scholar 

  67. Tzeng Y-F (2000) Process characterisation of pulsed Nd: YAG laser seam welding. Int J Adv Manuf Technol 16(1):10–18. https://doi.org/10.1007/PL00013126

    Article  Google Scholar 

  68. Blackburn JE, Allen CM, Hilton PA, Li L (2010) Dual focus Nd:YAG laser welding of titanium alloys. Proceedings of the 36th International Matador Conference, pp 279-282. https://doi.org/10.1007/978-1-84996-432-6_64

  69. Torkamany M, Hamedi M, Malek F, Sabbaghzadeh J (2006) The effect of process parameters on keyhole welding with a 400 W Nd: YAG pulsed laser. J Phys D Appl Phys 39(21):4563. https://doi.org/10.1088/0022-3727/39/21/009

    Article  Google Scholar 

  70. Fang X, Liu H, Zhang J (2014) Microstructure and mechanical properties of pulsed laser beam welded Ti-2Al-1.5 Mn titanium alloy joints. J Mater Eng Perform 23(6):1973–1980

    Article  Google Scholar 

  71. Chen SH, Huang JH, Cheng DH, Zhang H, Zhao XK (2012) Superplastic deformation mechanism and mechanical behavior of a laser-welded Ti-6Al-4V alloy joint. Mat Sci Eng A Struct 541:110–119. https://doi.org/10.1016/j.msea.2012.02.011

    Article  Google Scholar 

  72. Cheng DH, Huang JH, Zhao XK, Zhang H (2010) Microstructure and superplasticity of laser welded Ti-6Al-4V alloy. Mater Des 31(1):620–623. https://doi.org/10.1016/j.matdes.2009.06.020

    Article  Google Scholar 

  73. Fang XY, Zhang JX (2015) Effects of microstructure and concavity on damage behavior of laser beam welded Ti-2Al-1.5Mn titanium alloy joints. Int J Adv Manuf Technol 79(9-12):1557–1568. https://doi.org/10.1007/s00170-015-6924-6

    Article  Google Scholar 

  74. Fang XY, Liu H, Zhang JX (2014) Microstructure and mechanical properties of pulsed laser beam welded Ti-2Al-1.5Mn titanium alloy joints. J Mater Eng Perform 23(6):1973–1980. https://doi.org/10.1007/s11665-014-1002-z

    Article  Google Scholar 

  75. Shinoda T, Matsunaga K, Shinhara M (1991) Laser welding of titanium alloy. Weld Int 5(5):346–351. https://doi.org/10.1080/09507119109446749

    Article  Google Scholar 

  76. Schneider A, Gumenyuk A, Lammers M, Malletschek A, Rethmeier M (2014) Laser beam welding of thick titanium sheets in the field of marine technology.8th International Conference on Laser Assisted Net Shape Engineering (Lane 2014) 56:582-590. https://doi.org/10.1016/j.phpro.2014.08.046

  77. Denney P, Metzbower E (1989) Laser beam welding of titanium. Weld J 68(8):342s–346s

    Google Scholar 

  78. Guo W, Li RT, Zhu Y, Liu Q, Qu P, Kang H (2013) Superplastic tensile behavior and microstructure evolution of laser welded Ti-6Al-4V alloy. Rare Metal Mater Eng 42:74–77

    Google Scholar 

  79. Liu H, Nakata K, Zhang J, Yamamoto N, Liao J (2012) Microstructural evolution of fusion zone in laser beam welds of pure titanium. Mater Charact 65:1–7. https://doi.org/10.1016/j.matchar.2011.12.010

    Article  Google Scholar 

  80. Casalino G, Curcio F, Minutolo FMC (2005) Investigation on Ti6Al4V laser welding using statistical and Taguchi approaches. J Mater Process Technol 167(2):422–428. https://doi.org/10.1016/j.jmatprotec.2005.05.031

    Article  Google Scholar 

  81. Ahn J, He E, Chen L, Dear J, Davies C (2017) The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3. J Manuf Process 29:62–73. https://doi.org/10.1016/j.jmapro.2017.07.011

    Article  Google Scholar 

  82. Cao XJ, Debaecker G, Jahazi M, Marya S, Cuddy J, Birur A Effect of post-weld heat treatment on Nd: YAG laser welded Ti-6Al-4V alloy quality. In: Materials Science Forum, 2010. Trans Tech Publ, pp 3655-3660. https://doi.org/10.4028/www.scientific.net/MSF.638-642.3655

  83. Khaled Z (1994) An investigation of pore cracking in titanium welds. J Mater Eng Perform 3(3):419–434. https://doi.org/10.1007/BF02645341

    Article  MathSciNet  Google Scholar 

  84. Shariff T, Cao X, Chromik RR, Wanjara P, Cuddy J, Birur A (2012) Effect of joint gap on the quality of laser beam welded near-beta Ti-5553 alloy with the addition of Ti-6Al-4V filler wire. J Mater Sci 47(2):866–875. https://doi.org/10.1007/s10853-011-5866-0

    Article  Google Scholar 

  85. Kashaev N, Ventzke V, Fomichev V, Fomin F, Riekehr S (2016) Effect of Nd: YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Opt Laser Eng 86:172–180. https://doi.org/10.1016/j.optlaseng.2016.06.004

    Article  Google Scholar 

  86. Abbasi K, Beidokhti B, Sajjadi S (2017) Microstructure and mechanical properties of Ti-6Al-4V welds using α, near-α and α+ β filler alloys. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2017.07.027

  87. Cao X, Debaecker G, Poirier E, Marya S, Cuddy J, Birur A, Wanjara P (2011) Tolerances of joint gaps in Nd:YAG laser welded Ti-6Al-4V alloy with the addition of filler wire. J Laser Appl 23(1):Artn 012004. https://doi.org/10.2351/1.3554266

    Article  Google Scholar 

  88. Dilthey U, Fuest D, Scheller W (1995) Laser welding with filler wire. Opt Quant Electron 27(12):1181–1191. https://doi.org/10.1007/BF00326474

    Article  Google Scholar 

  89. Tan C, Chen B, Meng S, Zhang K, Song X, Zhou L, Feng J (2016) Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler. Mater Design 99:127–134

    Article  Google Scholar 

  90. Tan C, Song X, Chen B, Li L, Feng J (2016) Enhanced interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti joints with Al element from filler. Mater Lett 167:38–42

    Article  Google Scholar 

  91. Cai X, Sun D, Li H, Guo H, Gu X, Zhao Z (2017) Microstructure characteristics and mechanical properties of laser-welded joint of γ-TiAl alloy with pure Ti filler metal. Opt Laser Technol 97:242–247. https://doi.org/10.1016/j.optlastec.2017.07.011

    Article  Google Scholar 

  92. Kumar A, Gupta MC (2009) Surface preparation of Ti-3Al-2.5 V alloy tubes for welding using a fiber laser. Opt Laser Eng 47(11):1259–1265. https://doi.org/10.1016/j.optlaseng.2009.05.011

    Article  Google Scholar 

  93. Bertrand C, Laplanche O, Rocca J, Le Petitcorps Y, Nammour S (2007) Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd–Yag laser. Laser Med Sci 22(4):237–244. https://doi.org/10.1007/s10103-006-0438-2

    Article  Google Scholar 

  94. Kumar A, Sapp M, Vincelli J, Gupta MC (2010) A study on laser cleaning and pulsed gas tungsten arc welding of Ti-3Al-2.5V alloy tubes. J Mater Process Technol 210(1):64–71. https://doi.org/10.1016/j.jmatprotec.2009.08.017

    Article  Google Scholar 

  95. Turner M, Schmidt M, Li L (2005) Preliminary study into the effects of YAG laser processing of titanium 6Al–4V alloy for potential aerospace component cleaning application. Appl Surf Sci 247(1):623–630. https://doi.org/10.1016/j.apsusc.2005.01.097

    Article  Google Scholar 

  96. Turner M, Crouse P, Li L (2006) Comparison of mechanisms and effects of Nd: YAG and CO 2 laser cleaning of titanium alloys. Appl Surf Sci 252(13):4792–4797. https://doi.org/10.1016/j.apsusc.2005.06.050

    Article  Google Scholar 

  97. Li H, Costil S, Liao H, Coddet C, Barnier V, Oltra R (2008) Surface preparation by using laser cleaning in thermal spray. J Laser Appl 20(1):12–21. https://doi.org/10.2351/1.2831623

    Article  Google Scholar 

  98. Gao X-L, Zhang L-J, Liu J, Zhang J-X (2014) Effects of weld cross-section profiles and microstructure on properties of pulsed Nd: YAG laser welding of Ti6Al4V sheet. Int J Adv Manuf Technol 72(5-8):895–903. https://doi.org/10.1007/s00170-014-5722-x

    Article  Google Scholar 

  99. Gang T, Shi DH, Yuan Y, Yang SY (2006) Segmentation of small defects in laser weld of titanium alloy with complex structure. Insight 48(12):731–734. https://doi.org/10.1784/insi.2006.48.12.731

    Article  Google Scholar 

  100. Wang M, Jiang ML, Wei Q, Gu KF (2011) Technique of laser-TIG hybrid T-shape joint welding of titanium alloy. Mater Process Technol Pts 1-4 291-294:841–847. https://doi.org/10.4028/www.scientific.net/AMR.291-294.841

    Article  Google Scholar 

  101. Sun Z, Ion J (1995) Laser welding of dissimilar metal combinations. J Mater Sci 30(17):4205–4214. https://doi.org/10.1007/BF00361499

    Article  Google Scholar 

  102. Cheng DH, Huang JH, Chen YP, Hu DA (2012) Microstructure evolution characterization of weld joints by laser welding for superplastic deformation of titanium alloy. Rare Metal Mat Eng 41(2):368–371

    Google Scholar 

  103. Cao X, Debaecker G, Poirier E, Marya S, Cuddy J, Birur A, Wanjara P (2009) Effect of joint gap on Nd: YAG laser welded Ti-6Al-4V. In: ICALEO 2009 Conference Proceedings, pp 1614-1623

  104. Junaid M, Baig MN, Shamir M, Khan FN, Rehman K, Haider J (2017) A comparative study of pulsed laser and pulsed TIG welding of Ti-5Al-2.5Sn titanium alloy sheet. J Mater Process Technol 242:24–38. https://doi.org/10.1016/j.jmatprotec.2016.11.018

    Article  Google Scholar 

  105. Sun Z, Annergren I, Pan D, Mai T (2003) Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Mater Sci Eng A 345(1):293–300. https://doi.org/10.1016/S0921-5093(02)00477-X

    Article  Google Scholar 

  106. Zhang JB, Fan D, Sun YN, Zheng YF (2007) Microstructure and hardness of the laser surface Treated titanium. In: Key Engineering Materials. Trans Tech Publ, pp 1745-1748. https://doi.org/10.4028/www.scientific.net/KEM.353-358.1745

  107. Zhang M, Yang D, Chen G (2014) Study on microstructure and properties of laser-MIG hybrid welding joints for Ti-70 alloy. Mach Des Manuf Eng Iii:128–132. https://doi.org/10.4028/www.scientific.net/AMM.607.128

    Article  Google Scholar 

  108. Fang XY, Liu H, Zhang JX (2015) Reducing the underfill rate of pulsed laser welding of titanium alloy through the application of a transversal pre-extrusion load. J Mater Process Technol 220:124–134. https://doi.org/10.1016/j.jmatprotec.2015.01.015

    Article  Google Scholar 

  109. Dey S, Roy S, Suwas S, Fundenberger J, Ray R (2010) Annealing response of the intermetallic alloy Ti–22Al–25Nb. Intermetallics 18(6):1122–1131. https://doi.org/10.1016/j.intermet.2010.02.010

    Article  Google Scholar 

  110. Lei ZL, Dong ZJ, Chen YB, Huang L, Zhu RC (2013) Microstructure and mechanical properties of laser welded Ti-22Al-27Nb/TC4 dissimilar alloys. Mat Sci Eng A Struct 559:909–916. https://doi.org/10.1016/j.msea.2012.09.057

    Article  Google Scholar 

  111. Zhang KZ, Liu M, Lei ZL, Chen YB (2014) Microstructure evolution and tensile properties of laser-TIG hybrid welds of Ti2AlNb-based titanium aluminide. J Mater Eng Perform 23(10):3778–3785. https://doi.org/10.1007/s11665-014-1153-y

    Article  Google Scholar 

  112. Boehlert C, Majumdar B, Seetharaman V, Miracle D (1999) Part I. The microstructural evolution in Ti-Al-Nb O+ BCC orthorhombic alloys. Metall Mater Trans A 30(9):2305–2323. https://doi.org/10.1007/s11661-999-0240-4

    Article  Google Scholar 

  113. Wu A, Zou G, Ren J, Zhang H, Wang G, Liu X, Xie M (2002) Microstructures and mechanical properties of Ti–24Al–17Nb (at.%) laser beam welding joints. Intermetallics 10(7):647–652. https://doi.org/10.1016/S0966-9795(02)00049-3

    Article  Google Scholar 

  114. Bendersky L, Roytburd A, Boettinger W (1994) Phase transformations in the (Ti, Al) 3 Nb section of the Ti– Al– Nb system—I. Microstructural predictions based on a subgroup relation between phases. Acta Metall Mater 42(7):2323–2335. https://doi.org/10.1016/0956-7151(94)90311-5

    Article  Google Scholar 

  115. Kong BB, Liu G, Wang DJ, Wang KH, Yuan SJ (2016) Microstructural investigations for laser welded joints of Ti-22Al-25Nb alloy sheets upon large deformation at elevated temperature. Mater Design 90:723–732. https://doi.org/10.1016/j.matdes.2015.11.007

    Article  Google Scholar 

  116. Chen YB, Zhang KZ, Hu X, Lei ZL, Ni LC (2016) Study on laser welding of a Ti-22Al-25Nb alloy: microstructural evolution and high temperature brittle behavior. J Alloy Compd 681:175–185

    Article  Google Scholar 

  117. Raghavan V (2005) Al-Nb-Ti (aluminum-niobium-titanium). J Phase Equilib Diffus 26(4):360–368. https://doi.org/10.1361/154770305X56827

    Article  Google Scholar 

  118. Mao JW, Lu WJ, Wang LQ, Qin JN, Zhang D (2014) Microstructures and mechanical properties in laser beam welds of titanium matrix composites. Sci Technol Weld Joi 19(2):142–149. https://doi.org/10.1179/1362171813y.0000000176

    Article  Google Scholar 

  119. Wang KH, Liu G, Yuan SJ (2015) Deformation behaviour of laser-welded tube blank of TA15 Ti-alloy for gas forming at elevated temperature.4th International Conference on New Forming Technology (Icnft 2015) 21. ARTN 06005. https://doi.org/10.1051/matecconf/20152106005

  120. Ahmed T, Rack H (1998) Phase transformations during cooling in α+ β titanium alloys. Mater Sci Eng A 243(1):206–211. https://doi.org/10.1016/S0921-5093(97)00802-2

    Article  Google Scholar 

  121. Sarre B, Flouriot S, Geandier G, Panicaud B, de Rancourt V (2016) Mechanical behavior and fracture mechanisms of titanium alloy welded joints made by pulsed laser beam welding. Procedia Struct Int 2:3569–3576. https://doi.org/10.1016/j.prostr.2016.06.445

    Article  Google Scholar 

  122. Cao X, Kabir ASH, Wanjara P, Gholipour J, Birur A, Cuddy J, Medraj M (2014) Global and local mechanical properties of autogenously laser welded Ti-6Al-4V. Metall Mater Trans A 45(3):1258–1272. https://doi.org/10.1007/s11661-013-2106-z

    Article  Google Scholar 

  123. Lutjering G (1998) Influence of processing on microstructure and mechanical properties of (alpha+beta) titanium alloys. Mat Sci Eng A Struct 243(1-2):32–45. https://doi.org/10.1016/S0921-5093(97)00778-8

    Article  Google Scholar 

  124. Yang CL, Lin SB, Zhang QT (2003) Effect of YF3 on weld microstructure and performance of titanium alloy TC4 in TIG welding. T Nonferr Metal Soc 13:18–21

    Google Scholar 

  125. Lee WV, Nicholls JI, Butson TJ, Daly CH (1997) Fatigue life of a Nd: YAG laser-welded metal ceramic alloy. Int J Prosthodont 10(5)

  126. Wu YL, Xin HT, Zhang CB, Tang ZB, Zhang ZY, Wang WF (2014) Mechanical properties of thin films of laser-welded titanium and their associated welding defects. Laser Med Sci 29(6):1799–1805. https://doi.org/10.1007/s10103-013-1334-1

    Article  Google Scholar 

  127. Tsay LW, Hsu C (2009) Notched tensile fracture of Ti-6Al-6V-2Sn welds at elevated temperature. In: Advanced Materials Research. Trans Tech Publ, pp 1137-1140. https://doi.org/10.4028/www.scientific.net/AMR.79-82.1137

  128. Liu J, Staron P, Riekehr S, Stark A, Schell N, Huber N, Schreyer A, Müller M, Kashaev N (2016) Phase transformation and residual stress in a laser beam spot-welded TiAl-based alloy. Metall Mater Trans A 47(12):5750–5760. https://doi.org/10.1007/s11661-016-3745-7

    Article  Google Scholar 

  129. Liu J, Dahmen M, Ventzke V, Kashaev N, Poprawe R (2013) The effect of heat treatment on crack control and grain refinement in laser beam welded β-solidifying TiAl-based alloy. Intermetallics 40:65–70. https://doi.org/10.1016/j.intermet.2013.04.007

    Article  Google Scholar 

  130. Liu J, Ventzke V, Staron P, Schell N, Kashaev N, Huber N (2012) Investigation of in situ and conventional post-weld heat treatments on dual-laser-beam-welded γ-TiAl-based alloy. Adv Eng Mater 14(10):923–927. https://doi.org/10.1002/adem.201200113

    Article  Google Scholar 

  131. Dunford D, Wisbey A, Partridge P (1991) Effect of superplastic deformation on microstructure, texture, and tensile properties of Ti–6AI–4V. Mater Sci Tech-Lond 7(1):62–70

    Article  Google Scholar 

  132. Cheng D, Huang J, Zhang H, Zhao X (2010) Superplastic deformation of laser welded Ti–6Al–4V sheet. Mater Sci Tech-Lond 26(4):457–460

    Article  Google Scholar 

  133. Cheng DH, Huang JH, Yang J, Zhang H, Guo HP (2010) Superplastic deformation mechanical behavior of laser welded joints of TC4 titanium alloys. Rare Metal Mater Eng 39(2):277–280

    Google Scholar 

  134. Wang KH, Liu G, Tao W, Zhao J, Huang K (2017) Study on the mixed dynamic recrystallization mechanism during the globularization process of laser-welded TA15 Ti-alloy joint under hot tensile deformation. Mater Charact 126:57–63

    Article  Google Scholar 

  135. Gang W, Zhang W-C, Zhang G-L, Xu Z-L (2009) Superplastic formability of Ti-6Al-4V butt-welded plate by laser beam welding. T Nonferr Metal Soc 19:s429–s433

    Article  Google Scholar 

  136. Kashaev N, Ventzke V, Horstmann M, Riekehr S, Yashin G, Stutz L, Beck W (2015) Microstructure and mechanical properties of laser beam welded joints between fine-grained and standard Ti-6Al-4V sheets subjected to superplastic forming. Adv Eng Mater 17(3):374–382

    Article  Google Scholar 

  137. Wu G, Shi C, Sha W, Sha A, Jiang H (2013) Effect of microstructure on the fatigue properties of Ti–6Al–4V titanium alloys. Mater Des 46:668–674. https://doi.org/10.1016/j.matdes.2012.10.059

    Article  Google Scholar 

  138. Casavola C, Pappalettere C, Tattoli F (2009) Experimental and numerical study of static and fatigue properties of titanium alloy welded joints. Mech Mater 41(3):231–243. https://doi.org/10.1016/j.mechmat.2008.10.015

    Article  Google Scholar 

  139. Amaya-Vázquez M, Sánchez-Amaya J, Boukha Z, El Amrani K, Botana FJ (2012) Application of laser remelting treatments to improve the properties of Ti6Al4V alloy. In: Materials Science Forum. Trans Tech Publ, pp 25-30. https://doi.org/10.4028/www.scientific.net/MSF.713.25

  140. Yue T, Yu J, Mei Z, Man H (2002) Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion resistance enhancement. Mater Lett 52(3):206–212. https://doi.org/10.1016/S0167-577X(01)00395-0

    Article  Google Scholar 

  141. Zaveri N, Mahapatra M, Deceuster A, Peng Y, Li L, Zhou A (2008) Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids. Electrochimica Acta 53(15):5022–5032. https://doi.org/10.1016/j.electacta.2008.01.086

    Article  Google Scholar 

  142. Badekas H, Panagopoulos C, Economou S (1994) Laser surface-treatment of titanium. J Mater Process Technol 44(1-2):54–60. https://doi.org/10.1016/0924-0136(94)90037-X

    Article  Google Scholar 

  143. Garcia I, De Damborenea J (1998) Corrosion properties of TiN prepared by laser gas alloying of Ti and Ti6Al4V. Corros Sci 40(8):1411–1419. https://doi.org/10.1016/S0010-938X(98)00046-8

    Article  Google Scholar 

  144. Yue T, Cheung T, Man H (2000) The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank’s solution. J Mater Sci Lett 19(3):205–208. https://doi.org/10.1023/A:1006750422831

    Article  Google Scholar 

  145. Zhu YP, Li CY, Zhang LY (2014) Effects of cryo-treatment on corrosion behavior and mechanical properties of laser-welded commercial pure titanium. Mater Trans 55(3):511–516. https://doi.org/10.2320/matertrans.M2013373

    Article  Google Scholar 

  146. Manladan S, Yusof F, Ramesh S, Fadzil M, Luo Z, Ao S (2017) A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90(1-4):605–634. https://doi.org/10.1007/s00170-016-9225-9

    Article  Google Scholar 

  147. Hagiwara M, Emura S, Araoka A, Kong B-O, Tang F (2003) Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy. Met Mater Int 9(3):265–272. https://doi.org/10.1007/BF03027045

    Article  Google Scholar 

  148. Boehlert C, Cowen C, Jaeger C, Niinomi M, Akahori T (2005) Tensile and fatigue evaluation of Ti–15Al–33Nb (at.%) and Ti–21Al–29Nb (at.%) alloys for biomedical applications. Mater Sci Eng C 25(3):263–275. https://doi.org/10.1016/j.msec.2004.12.011

    Article  Google Scholar 

  149. Çam G, Koçak M (1998) Progress in joining of advanced materials. Int Mater Rev 43(1):1–44. https://doi.org/10.1179/imr.1998.43.1.1

    Article  Google Scholar 

  150. Li DL, Hu SS, Shen JQ, Zhang H, Bu XZ (2016) Microstructure and mechanical properties of laser-welded joints of Ti-22Al-25Nb/TA15 dissimilar titanium alloys. J Mater Eng Perform 25(5):1880–1888. https://doi.org/10.1007/s11665-016-2025-4

    Article  Google Scholar 

  151. Threadgill P (1995) The prospects for joining titanium aluminides. Mater Sci Eng A 192:640–646. https://doi.org/10.1016/0921-5093(94)03346-3

    Article  Google Scholar 

  152. Shen JQ, Li B, Hu SS, Zhang H, Bu XZ (2017) Comparison of single-beam and dual-beam laser welding of Ti-22A1-25Nb/TA15 dissimilar titanium alloys. Opt Laser Technol 93:118–126. https://doi.org/10.1016/j.optlastec.2017.02.013

    Article  Google Scholar 

  153. Zhang H, Hu SS, Shen JQ, Li DL, Bu XZ (2015) Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys. Opt Laser Technol 74:158–166. https://doi.org/10.1016/j.optlastec.2015.06.006

    Article  Google Scholar 

  154. Zhang K, Lei Z, Chen Y, Liu M, Liu Y (2015) Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti–22Al–27Nb and TA15. Opt Laser Technol 73:139–145. https://doi.org/10.1016/j.optlastec.2015.04.028

    Article  Google Scholar 

  155. Ghosh M, Chatterjee S (2002) Characterization of transition joints of commercially pure titanium to 304 stainless steel. Mater Charact 48(5):393–399. https://doi.org/10.1016/S1044-5803(02)00306-6

    Article  Google Scholar 

  156. Hiraga H, Fukatsu K, Ogawa K, Nakayama M, Muto Y (2002) Nd: YAG laser welding of pure titanium to stainless steel. Weld Int 16(8):623–631. https://doi.org/10.1080/09507110209549587

    Article  Google Scholar 

  157. Murray JL (1987) Phase diagrams of binary titanium alloys. ASM Int 1987:354

    Google Scholar 

  158. Xian A-P, Si Z-Y (1992) Interlayer design for joining pressureless sintered sialon ceramic and 40Cr steel brazing with Ag 57 Cu 38 Ti 5 filler metal. J Mater Sci 27(6):1560–1566

    Article  Google Scholar 

  159. Tomashchuk I, Sallamand P, Andrzejewski H, Grevey D (2011) The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316 L electron beam and Nd: YAG laser joints. Intermetallics 19(10):1466–1473. https://doi.org/10.1016/j.intermet.2011.05.016

    Article  Google Scholar 

  160. Gao Y, Tsumura T, Nakata K (2012) Dissimilar welding of titanium alloys to steels

  161. Zhao S, Yu G, He X, Zhang Y, Ning W (2011) Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo. J Mater Process Technol 211(3):530–537. https://doi.org/10.1016/j.jmatprotec.2010.11.007

    Article  Google Scholar 

  162. Chen SH, Zhang MX, Huang JH, Cui CJ, Zhang H, Zhao XK (2014) Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater Des 53:504–511. https://doi.org/10.1016/j.matdes.2013.07.044

    Article  Google Scholar 

  163. Mohid Z, Liman MA, Rahman MRA, Rafai NH, Rahim EA (2014) Dissimilar materials laser welding characteristics of stainless steel and titanium alloy. Appl Mech Mater 465-466:1060–1064. https://doi.org/10.4028/www.scientific.net/AMM.465-466.1060

    Article  Google Scholar 

  164. Cherepanov A, Orishich A, Mali V (2014) Laser welding of stainless steel with a titanium alloy with the use of a multilayer insert obtained in an explosion. Combustion Explosion Shock Waves 50(4):483–487. https://doi.org/10.1134/S0010508214040182

    Article  Google Scholar 

  165. Shanmugarajan B, Padmanabham G (2012) Fusion welding studies using laser on Ti–SS dissimilar combination. Opt Laser Eng 50(11):1621–1627. https://doi.org/10.1016/j.optlaseng.2012.05.008

    Article  Google Scholar 

  166. Satoh G, Yao YL, Qiu C (2013) Strength and microstructure of laser fusion-welded Ti–SS dissimilar material pair. Int J Adv Manuf Technol 66(1):469–479. https://doi.org/10.1007/s00170-012-4342-6

    Article  Google Scholar 

  167. Kireev L, Zamkov V (2002) Fusion welding of titanium to steel. Paton Weld J C/C Avtomaticheskaia Svarka 2002(8):28–29

    Google Scholar 

  168. Tomashchuk I, Sallamand P, Belyavina N, Pilloz M (2013) Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer. Mat Sci Eng A Struct 585:114–122. https://doi.org/10.1016/j.msea.2013.07.050

    Article  Google Scholar 

  169. Tomashchuk I, Sallamand P, Jouvard J (2011) Multiphysical modeling of dissimilar welding via interlayer. J Mater Process Technol 211(11):1796–1803. https://doi.org/10.1016/j.jmatprotec.2011.06.004

    Article  MATH  Google Scholar 

  170. Tomashchuk I, Grevey D, Sallamand P (2015) Dissimilar laser welding of AISI 316L stainless steel to Ti6-Al4-6V alloy via pure vanadium interlayer. Mat Sci Eng A Struct 622:37–45. https://doi.org/10.1016/j.msea.2014.10.084

    Article  Google Scholar 

  171. Zhang Y, Sun DQ, Gu XY, Li HM (2016) A hybrid joint based on two kinds of bonding mechanisms for titanium alloy and stainless steel by pulsed laser welding. Mater Lett 185:152–155. https://doi.org/10.1016/j.matlet.2016.08.138

    Article  Google Scholar 

  172. Mitelea I, Groza C, Craciunescu C (2013) Copper interlayer contribution on Nd:YAG laser welding of dissimilar Ti-6Al-4V alloy with X5CrNi18-10 steel. J Mater Eng Perform 22(8):2219–2223. https://doi.org/10.1007/s11665-013-0507-1

    Article  Google Scholar 

  173. Li HM, Sun DQ, Gu XY, Dong P, Lv ZP (2013) Effects of the thickness of Cu filler metal on the microstructure and properties of laser-welded TiNi alloy and stainless steel joint. Mater Des 50:342–350. https://doi.org/10.1016/j.matdes.2013.03.014

    Article  Google Scholar 

  174. Groza C, Mitelea I, Uţu I, Crăciunescu CM (2012) Melted zone morphology by laser welding of Ti-6Al-4V with X5CrNi18-10. In: 21nd International Conference on Metallurgy and Materials. Brno, Czech Republic, p 113

  175. Pugacheva NB, Myasnikova MV, Michurov NS (2016) Simulation of the elastic deformation of laser-welded joints of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert. Phys Met Metallogr+ 117(2):195–203. https://doi.org/10.1134/S0031918x15120078

    Article  Google Scholar 

  176. Okamoto H (2002) Cu-Ti (copper-titanium). J Phase Equilib 23(6):549–550. https://doi.org/10.1361/105497102770331307

    Article  Google Scholar 

  177. Gao M, Chen C, Wang L, Wang ZM, Zeng XY (2015) Laser-arc hybrid welding of dissimilar titanium alloy and stainless steel using copper wire. Metall Mater Trans A 46A(5):2007–2020. https://doi.org/10.1007/s11661-015-2798-3

    Article  Google Scholar 

  178. DebRoy T, Bhadeshia H (2010) Friction stir welding of dissimilar alloys—a perspective. Sci Technol Weld Join 15(4):266–270. https://doi.org/10.1179/174329310X12726496072400

    Article  Google Scholar 

  179. Gao M, Mei S, Wang Z, Li X, Zeng X (2012) Characterisation of laser welded dissimilar Ti/steel joint using Mg interlayer. Sci Technol Weld Joi 17(4):269–276

    Article  Google Scholar 

  180. Davis J (1994) Aluminium and aluminium alloy. ASM Speciality Handbook. ASM International, USA

    Google Scholar 

  181. Majumdar B, Galun R, Weisheit A, Mordike B (1997) Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser. J Mater Sci 32(23):6191–6200. https://doi.org/10.1023/A:1018620723793

    Article  Google Scholar 

  182. Vaidya W, Horstmann M, Ventzke V, Petrovski B, Koçak M, Kocik R, Tempus G (2010) Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. J Mater Sci 45(22):6242–6254. https://doi.org/10.1007/s10853-010-4719-6

    Article  Google Scholar 

  183. Vaidya W, Horstmann M, Ventzke V, Petrovski B, Koçak M, Kocik R, Tempus G (2009) Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. Part II: Resistance to fatigue crack propagation and fracture. Materialwiss Werkst 40(10):769–779. https://doi.org/10.1002/mawe.200900367

    Article  Google Scholar 

  184. J-m N, L-q L, Y-b C, X-s F (2007) Characteristics of laser welding-brazing joint of Al/Ti dissimilar alloys. Chin J Nonferrous Metals 17(4):617

    Google Scholar 

  185. Lee S-JN, Hiroshi, Kawahito Y, Katayama S (2013) Weldability of Ti and Al dissimilar metals using single-mode fiber laser. J Laser Micro Nanoen 8(2):149–154. https://doi.org/10.2961/jlmn.2013.02.0006

    Article  Google Scholar 

  186. Lee S-J, Takahashi M, Kawahito Y, Katayama S (2015) Microstructural evolution and characteristics of weld fusion zone in high speed dissimilar welding of Ti and Al. Int J Precis Eng Man 16(10):2121–2127. https://doi.org/10.1007/s12541-015-0274-z

    Article  Google Scholar 

  187. Sahul M, Sahul M, Vyskoc M, Caplovic L, Pasak M (2017) Disk laser weld brazing of AW5083 aluminum alloy with titanium grade 2. J Mater Eng Perform 26(3):1346–1357. https://doi.org/10.1007/s11665-017-2529-6

    Article  Google Scholar 

  188. Casalino G, Mortello M, Peyre P (2015) Yb–YAG laser offset welding of AA5754 and T40 butt joint. J Mater Process Technol 223:139–149. https://doi.org/10.1016/j.jmatprotec.2015.04.003

    Article  Google Scholar 

  189. Kreimeyer M, Wagner F, Vollertsen F (2005) Laser processing of aluminum–titanium-tailored blanks. Opt Laser Eng 43(9):1021–1035. https://doi.org/10.1016/j.optlaseng.2004.07.005

    Article  Google Scholar 

  190. Song Z, Nakata K, Wu A, Liao J (2013) Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove. Mater Sci Eng A 560:111–120. https://doi.org/10.1016/j.msea.2012.09.044

    Article  Google Scholar 

  191. Tomashchuk I, Sallamand P, Cicala E, Peyre P, Grevey D (2015) Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V. J Mater Process Technol 217:96–104. https://doi.org/10.1016/j.jmatprotec.2014.10.025

    Article  Google Scholar 

  192. Chen S, Yang D, Li M, Zhang Y, Huang J, Yang J, Zhao X (2016) Laser penetration welding of an overlap titanium-on-aluminum configuration. Int J Adv Manuf Technol 87(9-12):3069–3079. https://doi.org/10.1007/s00170-016-8732-z

    Article  Google Scholar 

  193. Chen SH, Li LQ, Chen YB, Liu DJ (2010) Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire. Trans Nonferrous Metals Soc China 20(1):64–70. https://doi.org/10.1016/S1003-6326(09)60098-4

    Article  Google Scholar 

  194. Chen S, Li L, Chen Y (2010) Interfacial reaction mode and its influence on tensile strength in laser joining Al alloy to Ti alloy. Mater Sci Tech-Lond 26(2):230–235. https://doi.org/10.1179/174328409X399056

    Article  Google Scholar 

  195. Chen SH, Li LQ, Chen YB, Huang JH (2011) Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process. J Alloy Compd 509(3):891–898. https://doi.org/10.1016/j.jallcom.2010.09.125

    Article  Google Scholar 

  196. Peyre P, Berthe L, Dal M, Pouzet S, Sallamand P, Tomashchuk I (2014) Generation and characterization of T40/A5754 interfaces with lasers. J Mater Process Technol 214(9):1946–1953. https://doi.org/10.1016/j.jmatprotec.2014.04.019

    Article  Google Scholar 

  197. Chen Y, Chen S, Li L (2009) Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method. Int J Adv Manuf Technol 44(3):265–272. https://doi.org/10.1007/s00170-008-1837-2

    Article  Google Scholar 

  198. Möller F, Grden M, Thomy C, Vollertsen F (2011) Combined laser beam welding and brazing process for aluminium titanium hybrid structures. Phys Procedia 12:215–223. https://doi.org/10.1016/j.phpro.2011.03.028

    Article  Google Scholar 

  199. Chen S, Li L, Chen Y, Dai J, Huang J (2011) Improving interfacial reaction nonhomogeneity during laser welding–brazing aluminum to titanium. Mater Des 32(8-9):4408–4416

    Article  Google Scholar 

  200. Caiazzo F, Alfieri V, Cardaropoli F, Sergi V (2013) Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb: YAG disk laser. Int J Adv Manuf Technol 67(9-12):2157–2169. https://doi.org/10.1007/s00170-012-4637-7

    Article  Google Scholar 

  201. Gao M, Chen C, Gu YZ, Zeng XY (2014) Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti alloys. Materials 7(3):1590–1602

    Article  Google Scholar 

  202. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9):851–865. https://doi.org/10.1007/s00170-007-1279-2

    Article  Google Scholar 

  203. Gao M, Wang ZM, Li XY, Zeng XY (2012) Laser keyhole welding of dissimilar Ti-6Al-4V titanium alloy to AZ31B magnesium alloy. Metall Mater Trans A 43a(1):163–172. https://doi.org/10.1007/s11661-011-0825-6

    Article  Google Scholar 

  204. Gao M, Wang Z, Yan J, Zeng X (2011) Dissimilar Ti/Mg alloy butt welding by fibre laser with Mg filler wire—preliminary study. Sci Technol Weld Join 16(6):488–496. https://doi.org/10.1179/1362171811Y.0000000033

    Article  Google Scholar 

  205. Zhang Z, Tan C, Wang G, Chen B, Song X, Zhao H, Li L, Feng J Laser welding-brazing of immiscible AZ31B Mg and Ti-6Al-4V alloys using an electrodeposited Cu interlayer. J Mater Eng Perform 1-13

  206. Liu J, Ventzke V, Staron P, Brokmeier HG, Oehring M, Kashaev N, Huber N (2012) Effect of dual‐laser beam welding on microstructure properties of thin‐walled γ‐TiAl based alloy Ti-45Al-5Nb-0.2C-0.2B (TNB). Tms 2012 141st Annual Meeting & Exhibition - Supplemental Proceedings, Vol 1: Materials Processing and Interfaces:887-894. https://doi.org/10.1002/9781118356074.ch111

  207. Goldak JA, Akhlaghi M (2005) Computational welding mechanics. Springer Science & Business Media, New York

    Google Scholar 

  208. Rossini NS, Dassisti M, Benyounis KY, Olabi AG (2012) Methods of measuring residual stresses in components. Mater Des 35:572–588. https://doi.org/10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  209. Taljat B, Radhakrishnan B, Zacharia T (1998) Numerical analysis of GTA welding process with emphasis on post-solidification phase transformation effects on residual stresses1. Mater Sci Eng A 246(1-2):45–54

    Article  Google Scholar 

  210. Chuan L, Jianxun Z, Jing N (2009) Numerical and experimental analysis of residual stresses in full-penetration laser beam welding of Ti6Al4V alloy. Rare Metal Mat Eng 38(8):1317–1320

    Article  Google Scholar 

  211. Cao XJ, Debaecker G, Jahazi M, Marya S, Cuddy J, Birur A (2010) Effect of post-weld heat treatment on Nd: YAG laser welded Ti-6Al-4V alloy quality. Thermec 2009(Pts 1-4 638-642):3655-+. https://doi.org/10.4028/www.scientific.net/MSF.638-642.3655

    Article  Google Scholar 

  212. Wang G, Wu A, Zou G, Zhao Y, Chen Q, Ren J (2009) Bending properties and fracture behavior of Ti-23Al-17Nb alloy laser beam welding joints. Tsinghua Sci Technol 14(3):293–299. https://doi.org/10.1016/S1007-0214(09)70043-4

    Article  Google Scholar 

  213. Wang GQ, Wu AP, Zhao Y, Zou GS, Chen Q, Ren JL (2010) Effect of post-weld heat treatment on microstructure and properties of Ti-23Al-17Nb alloy laser beam welding joints. Trans Nonferrous Metals Soc China 20(5):732–739. https://doi.org/10.1016/S1003-6326(09)60206-5

    Article  Google Scholar 

  214. Short A (2009) Gas tungsten arc welding of α+ β titanium alloys: a review. Mater Sci Tech-Lond 25(3):309–324. https://doi.org/10.1179/174328408X389463

    Article  Google Scholar 

  215. Lin GM (2017) Research on welding process of titanium alloy. DEStech Transactions on Engineering and Technology Research (mcee)

  216. Petrov G, Khatuntsev A (1975) Chemical reactions role in pores formation during welding of titanium alloys. Svar Proizvod 57-58

  217. Kabir A, Cao X, Medraj M, Wanjara P, Cuddy J, Birur A (2010) Effect of welding speed and defocusing distance on the quality of laser welded Ti–6Al–4V. In: Proceedings of the Materials Science and Technology (MS&T) 2010 Conference, Houston, TX, pp 2787-2797

  218. EN B4678 (2011) Aerospace series. Weldments and brazements for aerospace structures joints of metallic materials by laser beam welding quality of weldments

  219. Li Z, Gobbi S, Norris I, Zolotovsky S, Richter K (1997) Laser welding techniques for titanium alloy sheet. J Mater Process Technol 65(1-3):203–208. https://doi.org/10.1016/S0924-0136(96)02263-7

    Article  Google Scholar 

  220. Chen HC, Pinkerton AJ, Li L (2011) Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications. Int J Adv Manuf Technol 52(9-12):977–987. https://doi.org/10.1007/s00170-010-2791-3

    Article  Google Scholar 

  221. Fang X, Zhang J (2014) Effect of underfill defects on distortion and tensile properties of Ti-2Al-1.5 Mn welded joint by pulsed laser beam welding. Int J Adv Manuf Technol 74(5-8):699–705. https://doi.org/10.1007/s00170-014-6033-y

    Article  Google Scholar 

  222. Karlsson J, Norman P, Kaplan AF, Rubin P, Lamas J, Yañez A (2011) Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding. Appl Surf Sci 257(17):7501–7506. https://doi.org/10.1016/j.apsusc.2011.03.068

    Article  Google Scholar 

  223. Cerit M, Kokumer O, Genel K (2010) Stress concentration effects of undercut defect and reinforcement metal in butt welded joint. Eng Fail Anal 17(2):571–578. https://doi.org/10.1016/j.engfailanal.2009.10.010

    Article  Google Scholar 

  224. Fabbro R (2010) Melt pool and keyhole behaviour analysis for deep penetration laser welding. J Phys D Appl Phys 43(44):445501. https://doi.org/10.1088/0022-3727/43/44/445501

    Article  Google Scholar 

  225. Society AW (2001) Specification for fusion welding for aerospace application. AWS D17.1, Miami

  226. Fang XY, Zhang JX (2016) Microstructural evolution and mechanical properties in laser beam welds of Ti-2Al-1.5Mn titanium alloy with transversal pre-extrusion load. Int J Adv Manuf Technol 85(1-4):337–343. https://doi.org/10.1007/s00170-015-7930-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auwal, S.T., Ramesh, S., Yusof, F. et al. A review on laser beam welding of titanium alloys. Int J Adv Manuf Technol 97, 1071–1098 (2018). https://doi.org/10.1007/s00170-018-2030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2030-x

Keywords

Navigation