Skip to main content
Log in

Design guideline for intermetallic compound mitigation in Al-Mg dissimilar welding through addition of interlayer

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper critically assesses the recent trends in aluminum-magnesium dissimilar welding and suggests a key design guideline to successfully improve the weld joint quality through addition of interlayer. First, the paper describes the main issue of incompatibility between these metals and considers the root cause of the problem, i.e., the Al-Mg-based intermetallic compounds (IMCs). It then reviews the recent trends of interlayer addition in various welding processes to mitigate Al-Mg IMCs. Focusing on laser welding, the paper finally proposes a 3-step design guideline in Al-Mg dissimilar welding through addition of an interlayer and presents a case study of using pure Ni foil as a proof of concept. The design guideline has shown to be an effective means to predict and prevent the formation of deleterious intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergmann JP, Schuerer R, Ritter K (2013) Friction stir welding of tailored blanks of aluminum and magnesium alloys. Key Eng Mater 549:492–499. https://doi.org/10.4028/www.scientific.net/KEM.549.492

    Article  Google Scholar 

  2. Shigematsu I, Kwon Y-J, Saito N (2009) Dissimilar friction stir welding for tailor-welded blanks of aluminum and magnesium alloys. Mater Trans 50:197–203. https://doi.org/10.2320/matertrans.MER2008326

    Article  Google Scholar 

  3. Bhagwan AV, Kridli GT (2004) Formability improvement in aluminum tailor-welded blanks via material combinations. J Manuf Process 6:134–140

    Article  Google Scholar 

  4. Tusek J, Kampus Z, Suban M (2001) Welding of tailored blanks of different materials. J Mater Process Technol 119:180–184

    Article  Google Scholar 

  5. Kumar N, Yuan W, Mishra RS (2015) Friction stir welding of dissimilar alloys and materials. Butterworth-Heinemann, Oxford

    Book  Google Scholar 

  6. Liu L, Ren D, Liu F (2014) A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Mater (Basel) 7:3735–3757. https://doi.org/10.3390/ma7053735

    Article  Google Scholar 

  7. Baker H, Okamoto H (1995) Alloy phase diagrams, 9th edn. ASM International, Novelty

    Google Scholar 

  8. Kou S (2003) Welding metallurgy. Wiley, Hoboken

  9. Borrisutthekul R, Miyashita Y, Mutoh Y (2005) Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O. Sci Technol Adv Mater 6:199–204. https://doi.org/10.1016/j.stam.2004.11.014

    Article  Google Scholar 

  10. Liu L, Liu X, Liu S (2006) Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer. Scr Mater 55:383–386. https://doi.org/10.1016/j.scriptamat.2006.04.025

    Article  Google Scholar 

  11. Liu L, Wang H, Song G, Ye J (2007) Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminum alloy. J Mater Sci 42:565–572. https://doi.org/10.1007/s10853-006-1068-6

    Article  Google Scholar 

  12. Liu LM, Wang HY, Zhang ZD (2007) The analysis of laser weld bonding of Al alloy to Mg alloy. Scr Mater 56:473–476. https://doi.org/10.1016/j.scriptamat.2006.11.034

    Article  Google Scholar 

  13. Wang H, Liu L, Zhu M, Wang H (2007) Laser weld bonding of A6061Al alloy to AZ31B Mg alloy. Sci Technol Weld Join 12:261–265. https://doi.org/10.1179/174329307X159784

    Article  Google Scholar 

  14. Miyashita Y, Borrisutthekul R, Chen J, Mutoh Y (2007) Application of twin laser beam on AZ31-A5052 dissimilar metals welding. Key Eng Mater 353–358:1956–1959

    Article  Google Scholar 

  15. Liu LM, Wang HY (2009) The effect of the adhesive on the microcracks in the laser welded bonding Mg to Al joint. Mater Sci Eng A 507:22–28. https://doi.org/10.1016/j.msea.2008.11.061

    Article  Google Scholar 

  16. Chang WS, Rajesh SR, Chun CK, Kim HJ (2011) Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy. J Mater Sci Technol 27:199–204. https://doi.org/10.1016/S1005-0302(11)60049-2

    Article  Google Scholar 

  17. Wang HY, Liu LM, Jia ZY (2011) The influence of adhesive on the Al alloy in laser weld bonding Mg-Al process. J Mater Sci 46:5534–5540. https://doi.org/10.1007/s10853-011-5498-4

    Article  Google Scholar 

  18. Liu L, Wang H (2011) Microstructure and properties analysis of laser welding and laser weld bonding Mg to Al joints. Metall Mater Trans A Phys Metall Mater Sci 42:1044–1050. https://doi.org/10.1007/s11661-010-0521-y

    Article  Google Scholar 

  19. Qi X, Liu L (2012) Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique. Mater Des 33:436–443. https://doi.org/10.1016/j.matdes.2011.04.046

    Article  Google Scholar 

  20. Scherm F, Bezold J, Glatzel U (2012) Laser welding of Mg alloy MgAl3Zn1 (AZ31) to Al alloy AlMg3 (AA5754) using ZnAl filler material. Sci Technol Weld Join 17:364–367. https://doi.org/10.1179/136217112X13333824902080

    Article  Google Scholar 

  21. Gao M, Mei S, Li X, Zeng X (2012) Characterization and formation mechanism of laser-welded Mg and Al alloys using Ti interlayer. Scr Mater 67:193–196. https://doi.org/10.1016/j.scriptamat.2012.04.015

    Article  Google Scholar 

  22. Wang H, Liu L, Liu F (2013) The characterization investigation of laser-arc-adhesive hybrid welding of Mg to Al joint using Ni interlayer. Mater Des 50:463–466. https://doi.org/10.1016/j.matdes.2013.02.085

    Article  Google Scholar 

  23. Wang HY, Zhang ZD, Liu LM (2013) The effect of galvanized iron interlayer on the intermetallics in the laser weld bonding of Mg to Al fusion zone. J Mater Eng Perform 22:351–357. https://doi.org/10.1007/s11665-012-0260-x

    Article  Google Scholar 

  24. Hajjari E, Divandari M, Razavi SH et al (2011) Dissimilar joining of Al Mg light metals by compound casting process. J Mater Sci 46:6491–6499

    Article  Google Scholar 

  25. Yamamoto N, Liao J, Watanabe S, Nakata K (2009) Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy. Mater Trans 50:2833–2838. https://doi.org/10.2320/matertrans.M2009289

    Article  Google Scholar 

  26. Zhang H, Dai X, Feng J (2014) Interfacial microstructure and mechanical properties of Al/Mg butt joints made by MIG welding process with Zn-Cd alloy as interlayer. J Wuhan Univ Technol Mater Sci Ed 29:1258–1264. https://doi.org/10.1007/s11595-014-1078-1

    Article  Google Scholar 

  27. Morishige T, Kawaguchi A, Tsujikawa M et al (2008) Dissimilar welding of Al and Mg alloys by FSW. Mater Trans 49:1129–1131. https://doi.org/10.2320/matertrans.MC200768

    Article  Google Scholar 

  28. Sato YS, Park SHC, Michiuchi M, Kokawa H (2004) Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater 50:1233–1236. https://doi.org/10.1016/j.scriptamat.2004.02.002

    Article  Google Scholar 

  29. Penner P (2013) Resistance spot welding of Al to Mg with different interlayers. University of Waterloo

  30. Sun M, Behravesh SB, Wu L et al (2016) Fatigue behavior of dissimilar Al 5052 and Mg AZ31 resistance spot welds with Sn-coated steel interlayer. Fatigue Fract Eng Mater Struct:1–11. https://doi.org/10.1111/ffe.12563

  31. Chang W-S, Rajesh SR, Chun C-K, Kim H-J (2011) Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy. J Mater Sci Technol 27:199–204. https://doi.org/10.1016/S1005-0302(11)60049-2

    Article  Google Scholar 

  32. Dai X, Zhang H, Zhang H et al (2016) Arc assisted ultrasonic seam welding of Mg/Al joints with Zn interlayer. Mater Sci Technol 32:1–9. https://doi.org/10.1179/1743284715Y.0000000070

    Google Scholar 

  33. Hao X, Song G (2008) Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy. IEEE Trans Plasma Sci 37:76–82. https://doi.org/10.1109/TPS.2008.2005720

    Google Scholar 

  34. Patel VK, Bhole SD, Chen DL (2012) Improving weld strength of magnesium to aluminium dissimilar joints via tin interlayer during ultrasonic spot welding. Sci Technol Weld Join 17:342–347. https://doi.org/10.1179/1362171812Y.0000000013

    Article  Google Scholar 

  35. Panteli A, Chen YC, Strong D et al (2012) Optimization of aluminium-to-magnesium ultrasonic spot welding. JOM 64:414–420. https://doi.org/10.1007/s11837-012-0268-6

    Article  Google Scholar 

  36. Shang J, Wang K, Zhou Q et al (2012) Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals. Mater Des 34:559–565. https://doi.org/10.1016/j.matdes.2011.05.008

    Article  Google Scholar 

  37. Penner P, Liu L, Gerlich A, Zhou Y (2013) Feasibility study of resistance spot welding of dissimilar Al/Mg combinations with Ni based interlayers. Sci Technol Weld Join 18:541–550. https://doi.org/10.1179/1362171813Y.0000000129

    Article  Google Scholar 

  38. Liu F, Ren D, Liu L (2013) Effect of Al foils interlayer on microstructures and mechanical properties of Mg–Al butt joints welded by gas tungsten arc welding filling with Zn filler metal. Mater Des 46:419–425. https://doi.org/10.1016/j.matdes.2012.10.012

    Article  Google Scholar 

  39. Panteli A, Robson JD, Chen YC, Prangnell PB (2013) The effectiveness of surface coatings on preventing interfacial reaction during ultrasonic welding of aluminum to magnesium. Metall Mater Trans A Phys Metall Mater Sci 44:5773–5781. https://doi.org/10.1007/s11661-013-1928-z

    Article  Google Scholar 

  40. Zhang HT, Dai XY, Feng JC (2014) Joining of aluminum and magnesium via pre-roll-assisted A-TIG welding with Zn interlayer. Mater Lett 122:49–51. https://doi.org/10.1016/j.matlet.2014.02.008

    Article  Google Scholar 

  41. Liu F, Wang H, Liu L (2014) Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal. Mater Charact 90:1–6. https://doi.org/10.1016/j.matchar.2014.01.010

    Article  Google Scholar 

  42. Penner P, Liu L, Gerlich A, Zhou Y (2014) Dissimilar resistance spot welding of aluminum to magnesium with Zn-coated steel interlayers. Weld J 93:225s–231s

    Google Scholar 

  43. Zhang Y, Luo Z, Li Y et al (2015) Microstructure characterization and tensile properties of Mg/Al dissimilar joints manufactured by thermo-compensated resistance spot welding with Zn interlayer. Mater Des 75:166–173. https://doi.org/10.1016/j.matdes.2015.03.030

    Article  Google Scholar 

  44. Sun M, Niknejad ST, Zhang G et al (2015) Microstructure and mechanical properties of resistance spot welded AZ31/AA5754 using a nickel interlayer. Mater Des 87:905–913. https://doi.org/10.1016/j.matdes.2015.08.097

    Article  Google Scholar 

  45. Sun M, Niknejad ST, Gao H et al (2016) Mechanical properties of dissimilar resistance spot welds of aluminum to magnesium with Sn-coated steel interlayer. Mater Des 91:331–339. https://doi.org/10.1016/j.matdes.2015.11.121

    Article  Google Scholar 

  46. Miedema AR, Chatel PF de (1979) A semiempirical approach to the heat of formation problem. Theory Alloy Phase Form: 344-389

  47. Miedema AR, de Chatel PF, de Boer FR (1980) Cohesion in alloys—fundamentals of a semi-empirical model. Phys B+ C 100:1–28. https://doi.org/10.1016/0378-4363(80)90054-6

    Article  Google Scholar 

  48. Miedema AR, Niessen AK, de Boer FR et al (1989) Cohesion in metals: transition metal alloys. North-Holland, Amsterdam

    Google Scholar 

  49. Bakker H, Miedema AR (1998) Enthalpies in alloys: Miedema’s semi-empirical model. Trans Tech Publications, Zurich

    Book  Google Scholar 

  50. Zhang RF, Liu BX (2002) Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Appl Phys Lett 81:1219–1221

    Article  Google Scholar 

  51. Zhang RF, Sheng SH, Liu BX (2007) Predicting the formation enthalpies of binary intermetallic compounds. Chem Phys Lett 442:511–514

    Article  Google Scholar 

  52. Zhang RF, Rajan K (2014) Statistically based assessment of formation enthalpy for intermetallic compounds. Chem Phys Lett 612:177–181

    Article  Google Scholar 

  53. Gilman JJ (2009) Chemistry and physics of mechanical hardness. Wiley, Hoboken

  54. Kattner UR, Boettinger WJ (1992) Thermodynamic calculation of the ternary TiAlNb system. Mater Sci Eng A 152:9–17. https://doi.org/10.1016/0921-5093(92)90039-4

    Article  Google Scholar 

  55. Jia BR, Liu LB, Yi DQ et al (2008) Thermodynamic assessment of the Al-Mg-Sm system. J Alloys Compd 459:267–273

    Article  Google Scholar 

  56. Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al-Ni system. J Alloys Compd 247:20–30. https://doi.org/10.1016/S0925-8388(96)02652-7

    Article  Google Scholar 

  57. Roine A (2002) HSC Chemistry 5(11):76

    Google Scholar 

  58. Weaver MI, Stevenson ME, Bradt RC (2003) Knoop hardness anisotropy and the indentation size effect on the (100) of single crystal NiAl. Mater Sci Eng A 345:113–117. https://doi.org/10.1016/S0921-5093(02)00454-9

    Article  Google Scholar 

  59. Ke L, Huang C, Xing L, Huang K (2010) Al-Ni intermetallic composites produced in situ by friction stir processing. J Alloys Compd 503:494–499

    Article  Google Scholar 

  60. Konieczny M, Mola R, Thomas P, Kopcial M (2011) Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Arch Metall Mater 56:693–702

    Article  Google Scholar 

  61. Kumar KG, Sivarao ATJS (2011) A novel intermetallic nickel aluminide (Ni3Al) as an alternative automotive body material. Int J Eng Technol 11:208–215

    Google Scholar 

  62. Song YK, R a V (2001) Phase equilibria and intermetallic phases in the Ni-Si-Mg ternary system. Metall Mater Trans A 32:5–18. https://doi.org/10.1007/s11661-001-0246-z

    Article  Google Scholar 

  63. Nasiri AM, Weckman DC, Zhou Y (2013) Interfacial microstructure of diode laser brazed AZ31B magnesium to steel sheet using a nickel interlayer. Weld J 92:1–10

    Google Scholar 

  64. Qi X, Song G (2010) Interfacial structure of the joints between magnesium alloy and mild steel with nickel as interlayer by hybrid laser-TIG welding. Mater Des 31:605–609. https://doi.org/10.1016/j.matdes.2009.06.043

    Article  Google Scholar 

  65. Matsunawa A, Mizutani M, Katayama S, Seto N (2003) Porosity formation mechanism and its prevention in laser lap welding. Weld Int 17:431–437. https://doi.org/10.1016/j.jmatprotec.2014.03.011

    Article  Google Scholar 

  66. Haboudou A, Peyre P, Vannes AB, Peix G (2003) Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys. Mater Sci Eng A 363:40–52. https://doi.org/10.1016/S0921-5093(03)00637-3

    Article  Google Scholar 

  67. Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminum alloys. Int Mater Rev 44:238–266

    Article  Google Scholar 

  68. Raghavan V (2009) Al-Mg-Ni (Aluminum-Magnesium-Nickel). J Phase Equilibria Diffus 30:274–275. https://doi.org/10.1007/s11669-009-9519-9

    Article  Google Scholar 

  69. Du Y, Chang YA, Huang B et al (2003) Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater Sci Eng A 363:140–151. https://doi.org/10.1016/S0921-5093(03)00624-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, L.H., Gerlich, A. & Zhou, Y. Design guideline for intermetallic compound mitigation in Al-Mg dissimilar welding through addition of interlayer. Int J Adv Manuf Technol 94, 2667–2678 (2018). https://doi.org/10.1007/s00170-017-1038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1038-y

Keywords

Navigation