Skip to main content
Log in

Finite element simulation of pin shape influence on material flow, forces in friction stir welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Selection of tool geometry is an important aspect for an efficient friction stir welding (FSW), as it influences material flow, forces, and other output responses. In the present paper, a three-dimensional coupled thermo-mechanical model is proposed based on Lagrangian method to evaluate the performance of two different pin shapes, i.e., smooth conical and threaded conical. Experimentally obtained axial force and spindle torque are used to validate the model. Particle tracking method is used to visualize the material flow on advancing side, retreating side, and centerline of the weld. Results reveal that material flow is non-symmetric and unstirred region is lower for the threaded pin as compared to the smooth. Higher slip rate is predicted for threaded pin as compared to the smooth pin. Vertical flow is observed for the threaded pin and is almost negligible for smooth pin.

Overview of current research

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora KS, Pandey S, Schaper M, Kumar R (2010) Microstructure evolution during friction stir welding of aluminum alloy AA2219. J Mater Sci Technol 26:747–753. doi:10.1016/S1005-0302(10)60118-1

    Article  Google Scholar 

  2. Jain R, Kumari K, Kesharwani RK, et al (2015) Friction stir welding: scope and recent development. In: Mordern Manuf. Eng. Ed. by J. Paulo Davim,. pp 179–228

  3. Tutunchilar S, Haghpanahi M, Besharati Givi MK et al (2012) Simulation of material flow in friction stir processing of a cast Al-Si alloy. Mater Des 40:415–426. doi:10.1016/j.matdes.2012.04.001

    Article  Google Scholar 

  4. Astarita A, Squillace A, Carrino L (2014) Experimental study of the forces acting on the tool in the friction-stir welding of AA 2024 T3 sheets. J Mater Eng Perform 23:3754–3761. doi:10.1007/s11665-014-1140-3

    Article  Google Scholar 

  5. Su H, Wu CS, Pittner A, Rethmeier M (2013) Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding. J Manuf Process 15:495–500. doi:10.1016/j.jmapro.2013.09.001

    Article  Google Scholar 

  6. Palanivel R, Koshy Mathews P, Murugan N, Dinaharan I (2012) Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater Des 40:7–16. doi:10.1016/j.matdes.2012.03.027

    Article  Google Scholar 

  7. Elangovan K, Balasubramanian V, Valliappan M (2007) Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol 38:285–295. doi:10.1007/s00170-007-1100-2

    Article  Google Scholar 

  8. Zhao Y-H, Lin S-B, Qu F-X, Wu L (2006) Influence of pin geometry on material flow in friction stir welding process. Mater Sci Technol 22:45–50. doi:10.1179/174328406X78424

    Article  Google Scholar 

  9. Fujii H, Cui L, Maeda M, Nogi K (2006) Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Mater Sci Eng A 419:25–31. doi:10.1016/j.msea.2005.11.045

    Article  Google Scholar 

  10. Lorrain O, Favier V, Zahrouni H, Lawrjaniec D (2010) Understanding the material flow path of friction stir welding process using unthreaded tools. J Mater Process Technol 210:603–609. doi:10.1016/j.jmatprotec.2009.11.005

    Article  Google Scholar 

  11. Hamilton C, Dymek S, Sommers A (2008) A thermal model of friction stir welding in aluminum alloys. Int J Mach Tools Manuf 48:1120–1130. doi:10.1016/j.ijmachtools.2008.02.001

    Article  Google Scholar 

  12. Jain R, Pal SK, Singh SB (2014) Finite element simulation of temperature and strain distribution in Al2024 aluminum alloy by friction stir welding. In: 5th Int. 26th All India Manuf. Technol. Des. Res. Conf. (AIMTDR 2014). pp 3–7

  13. Jain R, Pal SK, Singh SB (2016) Finite element simulation of temperature and strain distribution during friction stir welding of AA2024 aluminum alloy. J Inst Eng Ser C 98:(1)37-43. doi:10.1007/s40032-016-0304-3

  14. Schmidt H, Hattel J (2005) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 13:77–93. doi:10.1088/0965-0393/13/1/006

    Article  Google Scholar 

  15. Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf 50:143–155. doi:10.1016/j.ijmachtools.2009.11.008

    Article  Google Scholar 

  16. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A 419:381–388. doi:10.1016/j.msea.2005.09.041

    Article  Google Scholar 

  17. Guerdoux S, Fourment L (2009) A 3D numerical simulation of different phases of friction stir welding. Model Simul Mater Sci Eng 17:75001. doi:10.1088/0965-0393/17/7/075001

    Article  Google Scholar 

  18. Mohanty H, Mahapatra MM, Kumar P et al (2012) Study on the effect of tool profiles on temperature distribution and material flow characteristics in friction stir welding. Proc Inst Mech Eng Part B J Eng Manuf 226:1527–1535. doi:10.1177/0954405412451811

    Article  Google Scholar 

  19. Marzbanrad J, Akbari M, Asadi P, Safaee S (2014) Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding. Metall Mater Trans B Process Metall Mater Process Sci 45:1887–1894. doi:10.1007/s11663-014-0089-9

    Article  Google Scholar 

  20. Colegrove PA, Shercliff HR (2004) Development of Trivex friction stir welding tool part 1—two-dimensional flow modelling and experimental validation. Sci Technol Weld Join 9:352–361. doi:10.1179/136217104225021661

    Article  Google Scholar 

  21. Colegrove PA, Shercliff HR (2004) Development of Trivex friction stir welding tool part 2—three-dimensional flow modelling. Sci Technol Weld Join 9:352–361. doi:10.1179/136217104225021661

    Article  Google Scholar 

  22. Hirasawa S, Badarinarayan H, Okamoto K et al (2010) Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J Mater Process Technol 210:1455–1463. doi:10.1016/j.jmatprotec.2010.04.003

    Article  Google Scholar 

  23. Su H, Wu CS, Bachmann M, Rethmeier M (2015) Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding. Mater Des 77:114–125. doi:10.1016/j.matdes.2015.04.012

    Article  Google Scholar 

  24. Al-Badour F, Merah N, Shuaib A, Bazoune A (2014) Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int J Adv Manuf Technol 72:607–617. doi:10.1007/s00170-014-5680-3

    Article  Google Scholar 

  25. Hossfeld M (2016) A fully coupled thermomechanical 3D model for all phases of friction stir welding. 11th Int Symp Frict Stir Welding, Cambridge. http://dx.doi.org/10.18419/opus-8845

  26. Hossfeld M, Roos E (2013) A new approach to modelling friction stir welding using the CEL method. In: Int. Conf. Adv. Manuf. Eng. Technol. NEWTECH. pp 179–190. http://dx.doi.org/10.18419/opus-8825

  27. Fraser K, St-Georges L, Kiss LI (2016) A mesh free solid mechanics approach for simulating the friction stir welding process. In: Ishak M (ed) Join. Technol. Intech publishers, pp 27–52

  28. Colegrove PA, Shercliff HR (2005) 3-dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169:320–327. doi:10.1016/j.jmatprotec.2005.03.015

    Article  Google Scholar 

  29. Zhu XK, Chao YJ (2002) Effects of temperature dependent material properties on welding simulation. Comput Struct 80:967–976

    Article  Google Scholar 

  30. (2015) DEFORM v 11.0 documentation

  31. Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a finite element approach. J Manuf Process 23:278–286. doi:10.1016/j.jmapro.2016.04.008

    Article  Google Scholar 

  32. Jain R, Pal SK, Singh SB (2014) Finite element simulation of effect of process parameters on forces and spindle torque in friction. In: Int. Conf. Frict. based Process. pp 5–7

  33. Heinemann HH (1961) Flow stress of different aluminum and copper alloys for high strain rates and temperature, Dissertation, TH Aachen. 3202.

  34. Kobayashi S, OH S-I, Altan T (1989) Metal forming and the finite element method, Oxford series

  35. Trimble D, Monaghan J, O’Donnell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann - Manuf Technol 61:9–12. doi:10.1016/j.cirp.2012.03.024

    Article  Google Scholar 

  36. Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32A:2879–2884

    Article  Google Scholar 

  37. Colligan K (1999) Material flow behavior during friction stir welding of aluminum. Weld Res:229–237

  38. Zhao YH, Lin SB, Wu L, Qu FX (2005) The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Mater Lett 59:2948–2952. doi:10.1016/j.matlet.2005.04.048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Pal, S.K. & Singh, S.B. Finite element simulation of pin shape influence on material flow, forces in friction stir welding. Int J Adv Manuf Technol 94, 1781–1797 (2018). https://doi.org/10.1007/s00170-017-0215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0215-3

Keywords

Navigation