Skip to main content
Log in

Minimizing tool switching and indexing times with tool duplications in automatic machines

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Minimization of nonmachining time is a crucial issue for effective and profitable utilization of automatic machining centers. Most of the automatic machining centers contain an automatic tool changer (ATC) for holding multiple cutting tools. Effective operation of ATC in relation to the parts assigned for machining is critical in minimizing nonmachining times. There are actually two main operations on ATCs which can be reduced by making use of suitable optimization procedures. These operations are known as “ATC indexing problem” and “tool switching problem (ToSP).” These problems are separately addressed as NP-hard problems in the literature and mostly solved independently so far. In the present work, we made an attempt to solve these problems simultaneously by making use of a simulated annealing (SA) algorithm with novel solution coding/encoding strategies. The results are compared with the lower bounds obtained by a method proposed in the present work. Promising findings are expected to contribute to the possible future work of this research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Díaz-Tena E, Ugalde U, López de Lacalle LN, De la Iglesia A, Calleja A, Campa FJ (2013) Propagation of assembly errors in multitasking machines by the homogenous matrix method. Int J Adv Manuf Technol 68(1):149–164. doi:10.1007/s00170-012-4715-x

    Article  Google Scholar 

  2. Tang CS, Denardo EV (1988) Models arising from flexible manufacturing machine, minimization of the number of tool switches. Oper Res 36(5):767–784. doi:10.1287/opre.36.5.767

    Article  MATH  Google Scholar 

  3. Crama Y, Kolen AWJ, Oerlemans AG, Spieksma FCR (1994) Minimizing the number of tool switches on a flexible machine. Int J Flex Manuf Syst 6:33–54. doi:10.1007/BF01324874

    Article  Google Scholar 

  4. Bordoloi SK, Cooper WW, Matsuo H (1999) Flexibility, adaptability, and efficiency in manufacturing systems. Prod Oper Manag 8(2):133–150. doi:10.1111/j.1937-5956.1999.tb00366.x

    Article  Google Scholar 

  5. Djellab H, Djellab K, Gourgand M (2000) A new heuristic based on a hypergraph representation for the tool switching problem. Int J Prod Econ 64(1):165–176. doi:10.1016/S0925-5273(99)00055-9

    Article  Google Scholar 

  6. Crama Y, Moonen LS, Spieksma FC, Talloen E (2007) The tool switching problem revisited. Eur J Oper Res 182(2):952–957. doi:10.1016/j.ejor.2006.07.028

    Article  MATH  Google Scholar 

  7. Keung KW, Ip WH, Lee TC (2001) The solution of a multi-objective tool selection model using the GA approach. Int J Adv Manuf Technol 18(11):771–777. doi:10.1007/s001700170001

    Article  Google Scholar 

  8. Laporte G, Salazar-Gonzalez JJ, Semet F (2004) Exact algorithms for the job sequencing and tool switching problem. IIE Trans 36(1):37–45. doi:10.1080/07408170490257871

    Article  Google Scholar 

  9. van Hop N (2005) The tool-switching problem with magazine capacity and tool size constraints. IEEE Trans Syst Man Cybern Part A Syst Humans 35(5):617–628. doi:10.1109/TSMCA.2004.832824

    Article  Google Scholar 

  10. Salonen K, Raduly-Baka C, Nevalainen OS (2006) A note on the tool switching problem of a flexible machine. Comput Ind Eng 50(4):458–465. doi:10.1016/j.cie.2004.11.002

    Article  Google Scholar 

  11. Avcı S, Akturk MS (1996) Tool magazine arrangement and operations sequencing on CNC machines. Comput Oper Res 23(11):1069–1081. doi:10.1016/0305-0548(96)00014-7

    Article  MATH  Google Scholar 

  12. Akturk MS, Ozkan S (2001) Integrated scheduling and tool management in flexible manufacturing systems. Int J Prod Econ 39(12):2697–2722. doi:10.1080/00207540110051941

    Article  Google Scholar 

  13. Sinriech D, Rubinovitz J, Milo D, Nakbily G (2001) Sequencing, scheduling and tooling single-stage multifunctional machines in a small batch environment. IIE Trans 33(10):897–911. doi:10.1080/07408170108936882

    Google Scholar 

  14. Matzliach B (1998) The online tool switching problem with non-uniform tool size. Int J Prod Res 36(12):3407–3420. doi:10.1080/002075498192120

    Article  MATH  Google Scholar 

  15. Dereli T, Filiz İH (2000) Allocating optimal index positions on tool magazines using genetic algorithms. Robot Auton Syst 33:155–167. doi:10.1016/S0921-8890(00)00086-5

    Article  Google Scholar 

  16. Dereli T, Baykasoğlu A, Gindy NNZ, Filiz İH (1998) Determination of optimal turret index positions by genetic algorithms. Proceedings of 2nd International Symposium on Intelligent Manufacturing Systems, Sakarya, Turkey, 2:743–750

  17. Gray AE, Seidmann A, Stecke KE (1993) A synthesis of decision models for tool management in automated manufacturing. Manag Sci 39(5):549–567. doi:10.1287/mnsc.39.5.549

    Article  Google Scholar 

  18. Wilson JM (1987) Formulation and solution of a set of sequencing problems for flexible manufacturing systems. Proc Inst Mech Eng 201(134):247–249. doi:10.1243/PIME_PROC_1987_201_076_02

    Article  Google Scholar 

  19. Levitin G, Rubinovitz J (1995) Algorithm for tool placement in an automatic tool change magazine. Int J Prod Res 33(2):351–360. doi:10.1080/00207549508930153

    Article  MATH  Google Scholar 

  20. Turkcan A, Akturk MS, Storer RH (2007) Due date and cost-based FMS loading, scheduling and tool management. Int J Prod Res 45(5):1183–1213. doi:10.1080/00207540600559955

    Article  MATH  Google Scholar 

  21. Baykasoğlu A, Dereli T (2004) Heuristic optimization system for the determination of index positions on CNC magazines with the consideration of cutting tool duplications. Int J Prod Res 42(7):1281–1303. doi:10.1080/00207540310001622557

    Article  MATH  Google Scholar 

  22. Dereli T, Baykasoğlu A (2005) OPPS-PRI 2.0: an open and optimized process planning system for prismatic parts to improve the performance of SMEs in the machining industry. Int J Prod Res 43(5):1039–1087. doi:10.1080/0020754042000298548

    Article  Google Scholar 

  23. Dereli T, Filiz İH (1999) Optimisation of process planning functions by genetic algorithms. Comput Ind Eng 36(2):281–308. doi:10.1016/S0360-8352(99)00133-3

    Article  Google Scholar 

  24. Kayacan MC, Filiz IH, Sonmez AI, Baykasoglu A, Dereli T (1996) OPPS-ROT: an optimised process planning system for rotational parts. Comp Ind 32:181–195. doi:10.1016/S0166-3615(96)00061-9

    Article  Google Scholar 

  25. Herranz S, Campa FJ, Lopez de Lacalle LN, Rivero A, Lamikiz A, Ukar E, Sánchez JA, Bravo U (2005) The milling of airframe components with low rigidity: a general approach to avoid static and dynamic problems. Proc Inst Mech Eng B J Eng Manuf 219(11):789–801. doi:10.1243/095440505X32742

    Article  Google Scholar 

  26. Lopez de Lacalle LN, Lamikiz A, Muñoa J, Salgado MA, Sánchez JA (2006) Improving the high-speed finishing of forming tools for advanced high-strength steels (AHSS). Int J Adv Manuf Technol 29(1–2):49–63. doi:10.1007/s00170-004-2482-z

    Article  Google Scholar 

  27. Baykasoğlu A, Ozsoydan FB (2016) An improved approach for determination of index positions on CNC magazines with cutting tool duplications by integrating shortest path algorithm. Int J Prod Res 55(3):742–760. doi:10.1080/00207543.2015.1055351

    Article  Google Scholar 

  28. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1:269–271. doi:10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimisation by simulated annealing. Science 220:671–680. doi:10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  30. Baykasoğlu A, Gindy NNZ (2001) A simulated annealing algorithm for dynamic layout problem. Comp Oper Res 28(14):1403–1426. doi:10.1016/S0305-0548(00)00049-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin FT, Kao CY, Hsu CC (1993) Applying the genetic approach to simulated annealing in solving some NP-hard problems. IEEE Trans Syst Man Cybern 23(6):1752–1767. doi:10.1109/21.257766

    Article  Google Scholar 

  32. Bennage WA, Dhingra AK (1995) Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing. Int J Num Method Engr 38:2753–2773. doi:10.1002/nme.1620381606

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Baykasoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baykasoğlu, A., Ozsoydan, F.B. Minimizing tool switching and indexing times with tool duplications in automatic machines. Int J Adv Manuf Technol 89, 1775–1789 (2017). https://doi.org/10.1007/s00170-016-9194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9194-z

Keywords

Navigation