Skip to main content
Log in

Active precision design for complex machine tools: methodology and case study

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machine tool design starts with the determination of performance specifications. Precision of the NC axes is an important aspect of machine tool design. Conventionally, the precision specification of machine tools is empirically determined, resulting in poor designs with insufficient or excessive precision. To provide a cost-effective precision specification for complex machine tools, such as gear cutting machines, an active precision design approach is proposed to generate the specification of the positioning repeatability of NC axes to meet the designated working precision requirements of the machine tools. The methodology consists of error analysis and precision design in four steps: (1) workpiece surface formation modeling in terms of the motion axes and layout of the machine tool, and the generating principle of workpiece features; (2) workpiece machining error modeling based on the workpiece surface formation model by considering kinematic errors of the NC axes of the machine tool; (3) workpiece machining precision modeling via the machining error model; and (4) precision allocation according to the required workpiece precision and the machining error model. The methodology is demonstrated and validated through a case study of precision design for a six-axis CNC spiral bevel gear milling machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao SB (1997) Metal cutting machine tool design—a review. J Manuf Sci Eng 119:713–716

    Article  Google Scholar 

  2. Hale LC (1999) Principles and techniques for designing precision machines. PhD thesis. Massachusetts Institute of Technology

  3. Schellekens P, Rosielle N, Vermeulen H, Vermeulen M, Wetzels S, Pril W (1998) Design for precision: current status and trends. CIRP Ann Manuf Technol 47(2):557–586

    Article  Google Scholar 

  4. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  5. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  6. Ni J (1997) A perspective review of CNC machine accuracy enhancement through real-time error compensation. Chin Mechanic Eng 8(1):29–33

    Google Scholar 

  7. Chen JS (1995) Computer-aided accuracy enhancement for multi-axis CNC machine tool. Int J Mach Tools Manuf 35(4):593–605

    Article  Google Scholar 

  8. Wang SM, Liu YL, Kang Y (2002) An efficient error compensation system for CNC multi-axis machines. Int J Mach Tools Manuf 42(11):1235–1245

    Article  Google Scholar 

  9. Tsutsumi M, Saito A (2003) Identification and compensation of systematic deviations particular to 5-axis machining centers. Int J Mach Tools Manuf 43(8):771–780

    Article  Google Scholar 

  10. Tsutsumi M, Saito A (2004) Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary table by simultaneous four-axis control movements. Int J Mach Tools Manuf 44(12–13):1333–1342

    Article  Google Scholar 

  11. Raksiri C, Parnichkun M (2004) Geometric and force errors compensation in a 3-axis CNC milling machine. Int J Mach Tools Manuf 44(12–13):1283–1291

    Article  Google Scholar 

  12. Zhu WD, Wang ZG, Yamazaki K (2010) Machine tool component error extraction and error compensation by incorporating statistical analysis. Int J Mach Tools Manuf 50(9):798–806

    Article  Google Scholar 

  13. Jung JH, Choi JP, Lee SJ (2006) Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement. J Mater Process Technol 174(1–3):56–66

    Article  Google Scholar 

  14. Zhang Q, Zhao HL, Tang H, Sheng BH (1999) Application of error compensation technique for NC machine tools: thermal error compensation. Manufact Technol Mach Tool 3:26–28

    Google Scholar 

  15. Liang RJ, Ye WH, Zhang HY, Yang QF (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176

    Google Scholar 

  16. Wu CW, Tang CH, Chang CF, Shiao YS (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5–8):681–689

    Article  Google Scholar 

  17. Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5–8):667–675

    Article  Google Scholar 

  18. Han J, Wang LP, Wang HT, Cheng NB (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1–4):205–212

    Article  Google Scholar 

  19. Tan B, Mao XY, Liu HQ, Li B, He SP, Peng FY, Yin L (2014) A thermal error model for large machine tools that considers environmental thermal hysteresis effects. Int J Mach Tools Manuf 82–83:11–20

    Article  Google Scholar 

  20. Li Y, Zhao WH, Wu WW, Lu BH, Chen YB (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9–12):1415–1427

    Article  Google Scholar 

  21. Huang YQ, Zhang J, Li X, Tian LJ (2014) Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int J Adv Manuf Technol 71(9–12):1669–1675

    Article  Google Scholar 

  22. Zhang Q, Wang GF, Liu YW, Zhao HL, Sheng BH (1999) Application of error compensation technique for NC machine tools: geometric error compensation. Manufact Technol Mach Tool 1:30–34

    Google Scholar 

  23. Zhang Q, Zhang HG, Liu YW, Zhao HL, Sheng BH, Zhang TC (1999) Application of error compensation technique for NC machine tools: load error compensation. Manufact Technol Mach Tool 2:8–9

    Google Scholar 

  24. Liu YW, Zhang Q, Zhao XS, Zhang ZF, Zhang YD (2002) Multi-body system based technique for compensating thermal errors in machining centers. Chin J Mech Eng 38(1):127–130

    Article  Google Scholar 

  25. Fan JW, Guan JL, Wang WC, Luo Q, Zhang XL, Wang LY (2002) A universal modeling method for enhancement the volumetric accuracy of CNC machine tools. J Mater Process Technol 129(1–3):624–628

    Article  Google Scholar 

  26. Smith S, Woody BA, Miller JA (2005) Improving the accuracy of large scale monolithic parts using fiducials. CIRP Ann Manuf Technol 54(1):483–486

    Article  Google Scholar 

  27. Alberto CR, Leopoldo RH, Tatiana B, Ernst K (2007) Geometrical error analysis of a CNC micro-machine tool. Mechatronics 17(4–5):231–243

    Google Scholar 

  28. Woody BA, Smith KS, Hocken RJ, Miller JA (2007) A technique for enhancing machine tool accuracy by transferring the metrology reference from the machine tool to the workpiece. J Manuf Sci Eng 129(3):636–643

    Article  Google Scholar 

  29. Brecher C, Utsch P, Wenzel C (2009) Five-axes accuracy enhancement by compact and integral design. CIRP Ann Manuf Technol 58(1):355–358

    Article  Google Scholar 

  30. Wang ZG, Cheng X, Nakamoto K, Kobayashi S, Yamazaki K (2010) Design and development of a precision machine tool using counter motion mechanisms. Int J Machine Tools Manufac 50(4):357–365

    Article  Google Scholar 

  31. Brecher C, Utsch P, Klar R, Wenzel C (2010) Compact design for high precision machine tools. Int J Mach Tools Manuf 50(4):328–334

    Article  Google Scholar 

  32. Chase KW, Greenwood WH, Loosli BG, Hauglund LF (1990) Least cost tolerance allocation for mechanical assemblies with automated process selection. Manufac Rev 3(1):49–59

    Google Scholar 

  33. Chase KW (1999) Tolerance allocation methods for designers. ADCATS Rep 99(6):1–28

    Google Scholar 

  34. Sivakumar K, Balamurugan C, Ramabalan S (2011) Concurrent multi-objective tolerance allocation of mechanical assemblies considering alternative manufacturing process selection. Int J Adv Manuf Technol 53(5–8):711–732

    Article  Google Scholar 

  35. Andolfatto L, Thiébaut F, Lartigue C, Douilly M (2014) Quality-and cost-driven assembly technique selection and geometrical tolerance allocation for mechanical structure assembly. J Manuf Syst 33(1):103–115

    Article  Google Scholar 

  36. Khodaygan S, Movahhedy MR (2014) Robust tolerance design of mechanical assemblies using a multi-objective optimization formulation. SAE Technical Paper No.2014-01-0378

  37. Montgomery DC (2009) Introduction to statistical quality control, 6th edn. Wiley, New York, pp 351–364

    Google Scholar 

  38. International Standard ISO 230-2: 2006(E), Test code for machine tools—part 2: determination of accuracy and repeatability of positioning numerically controlled axes

  39. Ma H, Wang J (2009) Precision theory of instrument. Press of Beijing University of Aeronautics and Astronautics, Beijing, pp 376–379

    Google Scholar 

  40. Jin T (2005) Precision theory and application. Press of University of Science and Technology of China, Hefei, pp 212–214

    Google Scholar 

  41. Litivin FL, Fuentes A (2004) Gears geometry and applied theory, 2nd edn. Cambridge University Press, Cambridge, pp 633–644

    Book  Google Scholar 

  42. Gonzalez-Perez I, Fuentes A, Hayasaka K (2006) Analytical determination of basic machine-tool settings for generation of spiral bevel gears from blank data. J Mech Des 132(10):101002-1–11

    Google Scholar 

  43. Zeng T (1989) Design and machining of spiral bevel gear. Harbin Institute of Technology Press, Harbin, pp 90–91

    Google Scholar 

  44. Fan Q (2006) Computerized modeling and simulation of spiral bevel and hypoid gears manufactured by gleason face hobbing process. J Mech Des 128(6):1315–1327

    Article  Google Scholar 

  45. Fan Q (2007) Enhanced algorithms of contact simulation for hypoid gear drives produced by face-milling and face-hobbing processes. J Mech Des 129(1):31–37

    Article  Google Scholar 

  46. China National Standard GB 11365-89, Accuracy of bevel and hypoid gears

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, L., Wang, S. et al. Active precision design for complex machine tools: methodology and case study. Int J Adv Manuf Technol 80, 581–590 (2015). https://doi.org/10.1007/s00170-015-7034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7034-1

Keywords