Skip to main content
Log in

Numerical analysis of the interaction between the cutting forces, induced cutting damage, and machining parameters of CFRP composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The use of carbon fiber reinforced polymer (CFRP) composites becomes more attractive today in various industrial sectors such as aerospace, naval, and automotive. This is due to their high mechanical properties (strength, stiffness, light weight, etc.) and corrosion resistance. Machining processes such as trimming or drilling are frequently used to achieve dimensional tolerance and assembly requirements. However, a damage process involving matrix cracking, fiber fracture, and interlaminar delamination often occurs when machining these materials. In the current work, a numerical analysis has been used to identify the most significant machining factors and their interaction on the induced damage and cutting force. The orthogonal Design of Experiments (DoE) L27(313) of Taguchi has been applied to investigate the effect of the fiber orientation, the tool rake angle, the depth of cut, and the tool edge radius. The induced damage can strongly affect the surface roughness (surface quality of the workpieces) and considerably limits the use of these materials in many industrial applications. First of all, a coupled elastoplastic damage behavior law was adopted to simulate the permanent deformations caused by plasticity and to predict the degradation of mechanical properties due to the initiation of damage and its progression inside the composite structure. Satisfactory numerical results have been found and a good correlation has been obtained compared to experimental trends. The results reveal that the interaction between some factors could be neglected and the obtained responses are greatly influenced by the fiber orientation and the depth of cut rather than the tool rake angle and the tool edge radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu DF, Tang YJ, Cong WL (2012) A review of mechanical drilling for composite laminates. Compos Struct 94:1265–1279

    Article  Google Scholar 

  2. Tsao CC, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Proc Technol 203(1–3):342–348

    Article  Google Scholar 

  3. Vijayan K, Karthi P, Ramanathan A, Elanghovan M, Senthil Kumar M, Zitoune R, Davim JP (2012) Optimisation of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos Part B 43(4):1791–1799

    Article  Google Scholar 

  4. Koplev A (1980) Cutting on CFRP with single edge tools. In: Proceedings of the Third International Conference on Composite Materials, Paris 2:1597–1605

    Google Scholar 

  5. Koplev A, Lystrup A, Vorm T (1983) The cutting process, chips and cutting forces in machining CFRP. Composites 14(4):371–376

    Article  Google Scholar 

  6. Wang DH, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/epoxy composite part I: unidirectional laminate. Int J Mach Tool Manul 35(12):1623–1638

    Article  Google Scholar 

  7. Bhatnagar N, Ramakrishnan N, Naik NK, Komanduri R (1995) On the machining of fiber reinforced plastic (FRP) composite laminates. Int J Mach Tool Manuf 35(5):701–716

    Article  Google Scholar 

  8. Arola D, Ramulu M, Wang DH (1996) Chip formation in orthogonal trimming of graphite/epoxy. Compos Part A 27:121–133

    Article  Google Scholar 

  9. Ugo EE, Sherif El-Gizawy A, Chukwujekwu Okafor A (2001) An approach for development of damage-free drilling of carbon fiber reinforced thermosets. Int J Mach Tool Manuf 41:1795–1814

    Article  Google Scholar 

  10. Palanikumar K (2011) Experimental investigation and optimisation in drilling of GFRP composites. Measurement 44:2138–2148

    Article  Google Scholar 

  11. Rajasekaran T, Palanikumar K, Arunachalam S (2013) Investigation on the turning parameters for surface roughness using Taguchi analysis. Procedia Engineering 51:781–790

    Article  Google Scholar 

  12. J.S. Pang, M.N.M. Ansari, Omar S. Zaroog, Moaz H. Ali, S.M. Sapuan. Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep) hybrid composite. HBRC Journal 2013

  13. Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mach Tool Manuf 39(5):597–613

    MATH  Google Scholar 

  14. Ramesh MV, Seetharamu KN, Ganesan N, Sivakumar MS (1998) Analysis of machining of FRPs using FEM. Int J Mach Tools Manuf 38(12):1531–1549

    Article  Google Scholar 

  15. Arola D, Sultan MB, Ramulu M (2002) Finite element modeling of edge trimming fiber-reinforced plastics. transaction of ASME J Eng Mater and Technol 124:32–41

    Google Scholar 

  16. Lasri L, Nouari M, El-Mansori M (2009) Modelling of chip separation in machining unidirectional FRP composites by stiffness degradation concept. Compos Sci Technol 69:684–692

    Article  Google Scholar 

  17. ABAQUS Documentation for version 6.11-2 Dassault systems Simulia, 2011

  18. Rao GVG, Mahajan P, Bhatnagar N (2007) Micro-mechanical modeling of machining of FRP composites. Cutting force analysis. Compos Sci Technol 67:579–593

    Article  Google Scholar 

  19. Zitoune R, Collombet F, Lachaud F, Piquet R, Pasquet P (2005) Experimental calculation of the cutting conditions representative of the long fiber composite drilling Phase. Compos Sci Techno 65:455–466

    Article  Google Scholar 

  20. Wang XM, Zhang LC (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J of Mach Tool Manuf 43:1015–1022

    Article  Google Scholar 

  21. Jamal YCA. Machining of polymer composites. Springer 2009

  22. Bhatnagar N, Nayak D, Singh I, Chouhan H, Mahajan P (2004) Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates. Mater Manuf Process 19(6):1009–1023

    Article  Google Scholar 

  23. Mahdi M, Zhang L (2001) A finite element model for the orthogonal cutting of fiber reinforced composite materials. J Mater Process Technol 113(1–3):373–377

    Article  Google Scholar 

  24. Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of UD-FRP composites part 2: finite element analysis. Machining Sci Technol 9:503–528

    Article  Google Scholar 

  25. Lasri L. Modélisation macromécanique et micromécanique de l’usinage des composites à matrice polymère et fibres longues. PhD thesis; 2009

  26. Lasri L, Nouari M, El-Mansori M (2011) Wear resistance and induced cutting damage of aeronautical FRP components obtained by machining. Wear 271(9–10):2542–2548

    Article  Google Scholar 

  27. Iliescu D, Gehin D, Iordanoff I, Girot F, Gutiérrez ME (2010) A discrete element method for the simulation of CFRP cutting. Compos Sci Technol 70:73–80

    Article  Google Scholar 

  28. Santiuste C, Soldani X, Miguélez HM (2010) Machining FEM model of long fiber composites for aeronautical components. Compos Struct 92:691–698

    Article  Google Scholar 

  29. Soldani X, Santiuste C, Muñoz-Sánchez A, Miguélez H (2011) Influence of tool geometry and numerical parameters when modelling orthogonal cutting of LFRP composites. Compos Part A 42:1205–1216

    Article  Google Scholar 

  30. Calzada KA, Kapoor SG, DeVor RE, Samuel J, Srivastava AK (2011) Modeling and interpretation of fiber orientation-based failure mechanisms in machining of carbon fiber-reinforced polymer composites. J Manuf Processes 14:141–149

    Article  Google Scholar 

  31. Lemaitre J, Chaboche JL. Mechanics of solid materials. Cambridge University Press 1990; Cambridge, UK

  32. Crisfield MA. Non-linear finite element analysis of solids and structures. Volume 1: essentials. Wiley 1991

  33. Ladeveze P, LeDantec E (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267

    Article  Google Scholar 

  34. Allix O, Feissel P, Thévenet P (2003) A delay damage mesomodel of laminates under dynamic loading basic aspects and identification issues. Comput Struct 81:1177–1191

    Article  Google Scholar 

  35. Lubineau G, Ladevèze P (2008) Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard. Comput Mater Sci 43(1):137–145

    Article  Google Scholar 

  36. Allix O, Deü JF (1997) Delay-damage modelling for fracture prediction of laminated composites under dynamic loading. Eng Trans 45:29–46

    Google Scholar 

  37. Ladevèze P, Allix O, Deü JF, Lévêque D (2000) A mesomodel for localisation and damage computation in laminates. Comput Meth Appl Mech Engrg 183:105–122

    Article  MATH  Google Scholar 

  38. Feld, N. Vers un pont micro-méso de la rupture en compression des composites stratifiés. PhD thesis; pp 115, 2011

  39. Schimmerling P, Sisson JC, Zaïdi A (1998) Pratique des plans d′expériences. Lavoisier, Paris

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nouari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenia, S., Ben Ayed, L., Nouari, M. et al. Numerical analysis of the interaction between the cutting forces, induced cutting damage, and machining parameters of CFRP composites. Int J Adv Manuf Technol 78, 465–480 (2015). https://doi.org/10.1007/s00170-014-6600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6600-2

Keywords

Navigation