Skip to main content
Log in

Modeling of the moving induction heating used as secondary heat source in weld-based additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To combat thermal-induced problems such as residual stress, deformation, and crack, induction heating is introduced into weld-based additive manufacturing process as a controlled thermal intervention. To date, however, numerical simulation of this induction-assisted weld-based additive manufacturing process is still a tough task; for conducting transient thermoelectromagnetic motion, coupling analysis is computationally prohibitive. In this paper, a simulation strategy is devised to address the problem. The coupling analysis is performed only at a typical time to obtain the representative distribution of induction heat, which is then transferred to the thermal analysis of multilayer deposition as a moving heat source. Utilizing this strategy, the effects of real-time induction preheating and postheating on residual stress state are analyzed in comparative simulations. The results show that both induction preheating and postheating lead to more homogeneous heat input and lower residual stresses compared with the case without induction heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13(2):89–96. doi:10.1051/meca/2012003

    Article  Google Scholar 

  2. Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf 46(12–13):1459–1468. doi:10.1016/j.ijmachtools.2005.09.005

    Article  Google Scholar 

  3. Ding J, Colegrove P, Mehnen J, Ganguly S, Sequeira Almeida PM, Wang F, Williams S (2011) Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci 50(12):3315–3322

    Google Scholar 

  4. Amon CH, Beuth JL, Weiss LE, Merz R, Prinz FB (1998) Shape deposition manufacturing with microcasting: processing, thermal and mechanical issues. J Manuf Sci Eng Trans ASME 120(3):656–665. doi:10.1115/1.2830171

    Article  Google Scholar 

  5. Spencer JD, Dickens PM, Wykes CM (1998) Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng B J Eng Manuf 212(3):175–182. doi:10.1243/0954405981515590

    Article  Google Scholar 

  6. Clark D, Bache MR, Whittaker MT (2008) Shaped metal deposition of a nickel alloy for aero engine applications. J Mater Process Technol 203(1–3):439–448. doi:10.1016/j.jmatprotec.2007.10.051

    Article  Google Scholar 

  7. Brandl E, Baufeld B, Leyens C, Gault R (2010) Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia 5:595–606. doi:10.1016/j.phpro.2010.08.087

    Article  Google Scholar 

  8. Karunakaran KP, Suryakumar S, Pushpa V, Akula S (2010) Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf 26(5):490–499. doi:10.1016/j.rcim.2010.03.008

    Article  Google Scholar 

  9. Xiong XH, Zhang HO, Wang GL, Wang GX (2010) Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of superalloy. Robot Comput Integr Manuf 26(4):291–295. doi:10.1016/j.rcim.2009.10.002

    Article  Google Scholar 

  10. Mohammadhosseini A, Fraser D, Masood SH, Jahedi M (2013) Microstructure and mechanical properties of Ti–6Al–4V manufactured by electron beam melting process. Mater Res Innov 17(Suppl 2):s106–s112. doi:10.1179/1432891713z.000000000302

    Article  Google Scholar 

  11. Edwards P, Ramulu M (2014) Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater Sci Eng A 598:327–337. doi:10.1016/j.msea.2014.01.041

    Article  Google Scholar 

  12. Radaj D (1992) Heat effects of welding: temperature field, residual stress, distortion. Springer Berlin, Berlin, pp 263–265

    Book  Google Scholar 

  13. Brückner F, Lepski D, Beyer E (2007) Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding. J Therm Spray Technol 16(3):355–373

    Article  Google Scholar 

  14. Mughal MP, Fawad H, Mufti R (2006) Finite element prediction of thermal stresses and deformations in layered manufacturing of metallic parts. Acta Mech 183(1–2):61–79. doi:10.1007/s00707-006-0329-4

    Article  MATH  Google Scholar 

  15. Zhao H, Zhang G, Yin Z, Wu L (2011) A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol 211(3):488–495. doi:10.1016/j.jmatprotec.2010.11.002

    Article  Google Scholar 

  16. Zhao H, Zhang G, Yin Z, Wu L (2012) Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol 212(1):276–285. doi:10.1016/j.jmatprotec.2011.09.012

    Article  Google Scholar 

  17. Ding J, Colegrove P, Mehnen J, Williams S, Wang F, Almeida PS (2014) A computationally efficient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol 70(2–4):227–236

    Article  Google Scholar 

  18. Bai X, Zhang H, Wang G (2013) Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging. Int J Adv Manuf Technol. doi:10.1007/s00170-013-5102-y

    Google Scholar 

  19. Cho K-H (2012) Coupled electro-magneto-thermal model for induction heating process of a moving billet. Int J Therm Sci 60:195–204. doi:10.1016/j.ijthermalsci.2012.05.003

    Article  Google Scholar 

  20. Biro O, Preis K (1989) On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents. IEEE Trans Magn 25(4):3145–3159

    Article  Google Scholar 

  21. Goldak J, Chakravarti AP, Bibby M (1984) A new finite element model for welding heat sources. Metall Mater Trans B 15B(2):299–305

    Article  Google Scholar 

  22. Abid M, Siddique M (2005) Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint. Int J Press Vessel Pip 82(11):860–871. doi:10.1016/j.ijpvp.2005.06.008

    Article  Google Scholar 

  23. Ferro P, Berto F, Lazzarin P (2006) Generalized stress intensity factors due to steady and transient thermal loads with applications to welded joints. Fatigue Fract Eng Mater 29(6):440–453. doi:10.1111/j.1460-2695.2006.01015.x

    Article  Google Scholar 

  24. Heinze C, Schwenk C, Rethmeier M (2012) Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion. Simul Model Pract Theory 20(1):112–123. doi:10.1016/j.simpat.2011.09.004

    Article  Google Scholar 

  25. Gale WF, Totemeier TC (2003) Smithells metals reference book. Butterworth-Heinemann, Oxford, pp 14–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiou Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Zhang, H. & Wang, G. Modeling of the moving induction heating used as secondary heat source in weld-based additive manufacturing. Int J Adv Manuf Technol 77, 717–727 (2015). https://doi.org/10.1007/s00170-014-6475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6475-2

Keywords

Navigation