Skip to main content

Advertisement

Log in

Balancing of mixed-model two-sided assembly lines with multiple U-shaped layout

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Two-sided assembly lines are a special type of assembly lines in which tasks are assigned to workstations placed on both sides of the assembly line. This type of assembly systems are used for manufacturing systems with large-sized product such as cars, buses, and trucks. According to the principles of just-in-time production, it is deduced that there are copious benefits associated with U-shaped assembly lines in comparison with traditional straight line system. Nevertheless, implementing U-shaped layouts in two-sided assembly lines do not significantly increase the efficiency and flexibility of the workstations placed outside of the U-shaped layout. Hence, a novel multiple U-shaped layout is proposed in this study to deal with the mixed-model two-sided assembly line balancing (MTALB) problems. A mixed integer programming formulation is developed to model such manufacturing systems in which two conflicting objectives including minimizing the cycle time and minimizing the number of workstations are considered under precedence, zoning, capacity, side, and synchronism constraints. Since MTALB problems are in NP-hard class of combinatorial optimization problems, a heuristic algorithm based on genetic algorithms is developed to solve the MTALB problem. Three test-bed problems are also used to prove the usefulness and applicability of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rekiek B, Delchambre A (2005) Assembly line design: the balancing of mixed-model hybrid assembly lines with genetic algorithms. Springer series in advanced manufacturing, 1st edn. Springer, London

    Google Scholar 

  2. Henig MI (1986) Extensions of the dynamic programming method in the deterministic and stochastic assembly-line balancing problems. Comput Oper Res 13(4):443–449

    Article  MATH  Google Scholar 

  3. Saltzman MJ, Baybars I (1987) A two-process implicit enumeration algorithm for the simple assembly line balancing problem. Eur J Oper Res 32(1):118–129

    Article  MATH  Google Scholar 

  4. Berger I, Bourjolly JM, Laporte G (1992) Branch-and-bound algorithms for the multi-product assembly line balancing problem. Eur J Oper Res 58(2):215–222

    Article  MATH  Google Scholar 

  5. Sprechter A (1999) A competitive branch-and-bound algorithm for the simple assembly line balancing problem. Int J Prod Res 37(8):1787–1816

    Article  Google Scholar 

  6. Peeters M, Degraeve Z (2006) An linear programming based lower bound for the simple assembly line balancing problem. Eur J Oper Res 168(3):716–731

    Article  MathSciNet  MATH  Google Scholar 

  7. Bukchin Y, Rabinowitch I (2006) A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs. Eur J Oper Res 174(1):492–508

    Article  MATH  Google Scholar 

  8. Kilincci O, Bayhan GM (2006) A Petri net approach for simple assembly line balancing problems. Int J Adv Manuf Technol 30(11–12):1165–1173

    Article  Google Scholar 

  9. Kilincci O, Bayhan GM (2008) A P-invariant-based algorithm for simple assembly line balancing problem of type-1. Int J Adv Manuf Technol 37(3–4):400–409

    Article  Google Scholar 

  10. Boysen N, Fliedner M, Scholl A (2007) A classification of assembly line balancing problems. Eur J Oper Res 183(2):674–693

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu SB, Ng KM, Ong HL (2008) Branch-and-bound algorithms for simple assembly line balancing problem. Int J Adv Manuf Technol 36(1–2):169–177

    Article  Google Scholar 

  12. Bautista J, Pereira J (2009) A dynamic programming based heuristic for the assembly line balancing problem. Eur J Oper Res 194(3):787–794

    Article  MATH  Google Scholar 

  13. Sabuncuoglu I, Erel E, Alp A (2009) Ant colony optimization for the single model U-type assembly line balancing problem. Int J Prod Econ 120(2):287–300

    Article  Google Scholar 

  14. Shin D (1990) An efficient heuristic for solving stochastic assembly line balancing problems. Comput Ind Eng 18(3):285–295

    Article  Google Scholar 

  15. Liu SB, Ong HL, Huang HC (2005) A bidirectional heuristic for stochastic assembly line balancing type II problem. Int J Adv Manuf Technol 25(1–2):71–77

    Article  Google Scholar 

  16. Gao J, Sun L, Wang L, Mitsuo Gen M (2009) An efficient approach for type II robotic assembly line balancing problems. Comput Ind Eng 56(3):1065–1080

    Article  Google Scholar 

  17. Sarin SC, Erel E, Dar-El EM (1999) A methodology for solving single-model, stochastic assembly line balancing problem. Omega 27(5):525–535

    Article  Google Scholar 

  18. Gamberini R, Grassi A, Rimini B (2006) A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. Int J Prod Econ 102(2):226–243

    Article  Google Scholar 

  19. Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing. Eur J Oper Res 168(3):694–715

    Article  MathSciNet  MATH  Google Scholar 

  20. Song BL, Wong WK, Fan JT, Chan SF (2006) A recursive operator allocation approach for assembly line-balancing optimization problem with the consideration of operator efficiency. Comput Ind Eng 51(4):585–608

    Article  Google Scholar 

  21. Ghosh S, Gagnon RJ (1989) A comprehensive literature-review and analysis of the design, balancing and scheduling of assembly systems. Int J Prod Res 27(4):637–670

    Article  Google Scholar 

  22. Noorul Haq A, Jayaprakash J, Rengarajan K (2006) A hybrid genetic algorithm approach to mixed-model assembly line balancing. Int J Adv Manuf Technol 28(3–4):337–341

    Article  Google Scholar 

  23. Simaria AS, Vilarinho PM (2009) 2-ANTBAL: an ant colony optimization algorithm for balancing two-sided assembly lines. Comput Ind Eng 56(2):489–506

    Article  Google Scholar 

  24. Özcan U, Toklu B (2009) Balancing of mixed-model two-sided assembly lines. Comput Ind Eng 57(1):217–227

    Article  Google Scholar 

  25. Bartholdi JJ (1993) Balancing two-sided assembly lines: a case study. Int J Prod Res 31(10):2447–2461

    Article  Google Scholar 

  26. Kara Y, Paksoy T, Chang CT (2009) Binary fuzzy goal programming approach to single model straight and U-shaped assembly line balancing. Eur J Oper Res 195(2):335–347

    Article  MathSciNet  MATH  Google Scholar 

  27. Hwang R, Katayama H (2009) A multi-decision genetic approach for workload balancing of mixed-model U-shaped assembly line systems. Int J Prod Res 47(14):3797–3822

    Article  Google Scholar 

  28. Aigbedo H, Monden Y (1997) A parametric procedure for multi-criterion sequence scheduling for just-in-time mixed-model assembly lines. Int J Prod Res 35(9):2543–2564

    Article  MATH  Google Scholar 

  29. Miltenburg J (1998) Balancing U-lines in a multiple U-line facility. Eur J Oper Res 109(1):1–23

    Article  MATH  Google Scholar 

  30. Boysen N, Fliedner M, Scholl A (2008) Assembly line balancing: which model to use when? Int J Prod Econ 111(2):509–528

    Article  Google Scholar 

  31. Lebefromm U (1999) Produktionsmanagement—Einfuhrung mit Beispielen aus SAP R/3, 4th edn. Oldenbourg, Munchen

    Google Scholar 

  32. Grabau MR, Maurer RA (1998) Assembly line balancing when scarp impacts the bottom line. Prod Invent Manag J 39:16–21

    Google Scholar 

  33. Salveson ME (1955) The assembly line balancing problem. J Ind Eng 6(3):18–25

    Google Scholar 

  34. McMullen PR, Frazier GV (1998) Using simulated annealing to solve a multi-objective assembly line balancing problem with parallel workstations. Int J Prod Res 36(10):2717–2741

    Article  MATH  Google Scholar 

  35. Sprecher A (1999) A competitive branch-and-bound algorithm for the simple assembly line balancing problem. Int J Prod Res 37(8):1787–1816

    Article  MATH  Google Scholar 

  36. Capacho L, Pastor R, Dolgui A, Guschinskaya O (2009) An evaluation of constructive heuristic methods for solving the alternative subgraphs assembly line balancing problem. Journal of Heuristics 15(2):109–132

    Article  MATH  Google Scholar 

  37. Cortes P, Onieva L, Guadix J (2009) Optimizing and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study. Int J Prod Res 48:3637–3656. doi:10.1080/00207540902926522

    Article  Google Scholar 

  38. Miltenburg GJ, Wijngaard J (1994) The U-line line balancing problem. Manag Sci 40(10):1378–1988

    Article  MATH  Google Scholar 

  39. Baykasoglu A (2006) Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems. J Intell Manuf 17(2):217–232

    Article  MathSciNet  Google Scholar 

  40. Özcan U, Toklu B (2009) A new hybrid improvement heuristic approach to simple straight and U-type assembly line balancing problems. J Intell Manuf 20(1):123–136

    Article  Google Scholar 

  41. Chang CT (2007) Binary fuzzy goal programming. Eur J Oper Res 180(1):29–37

    Article  MATH  Google Scholar 

  42. Wu EF, Jin J, Bao JS, Hu XF (2008) A branch-and-bound algorithm for two-sided assembly line balancing. Int J Adv Manuf Technol 39(9–10):1009–1015

    Article  Google Scholar 

  43. Hu X, Wu E, Jin Y (2008) A station-oriented enumerative algorithm for two-sided assembly line balancing. Eur J Oper Res 186(1):435–440

    Article  MATH  Google Scholar 

  44. Kim YK, Song WS, Kim JH (2009) A mathematical model and a genetic algorithm for two-sided assembly line balancing. Comput Oper Res 36(3):853–865

    Article  MATH  Google Scholar 

  45. Özcan U, Gokcen H, Toklu B (2009) Balancing parallel two-sided assembly lines. Int J Prod Res 48:4767–4784. doi:10.1080/00207540903074991

    Article  Google Scholar 

  46. Özcan U, Toklu B (2009) Balancing two-sided assembly lines with sequence-dependent setup times. Int J Prod Res 48:5363–5383. doi:10.1080/00207540903140750

    Article  Google Scholar 

  47. Özcan U, Toklu B (2009) Multiple-criteria decision-making in two-sided assembly line balancing: a goal programming and a fuzzy goal programming models. Comput Oper Res 36(6):1955–1965

    Article  MATH  Google Scholar 

  48. Sawik T (2002) Monolithic vs. hierarchical balancing and scheduling of a flexible assembly line. Eur J Oper Res 143(1):115–124

    Article  MathSciNet  MATH  Google Scholar 

  49. Ozturk C, Tunali S, Hnich B, Ornek AM (2010) Simultaneous balancing and scheduling of flexible mixed model assembly lines with sequence-dependent setup times. Electronic Notes in Discrete Mathematics 36:65–72

    Article  Google Scholar 

  50. Simaria AS, Vilarinho PM (2004) A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Comput Ind Eng 47(4):391–407

    Article  Google Scholar 

  51. Venkatesh JVL, Dabade BM (2008) Evaluation of performance measures for representing operational objectives of a mixed model assembly line balancing problem. Int J Prod Res 46(22):6367–6388

    Article  MATH  Google Scholar 

  52. Bock S (2008) Using distributed search methods for balancing mixed-model assembly lines in the automotive industry. OR Spectr 30(3):551–578

    Article  MATH  Google Scholar 

  53. Ji P, Sze MT, Lee WB (2001) A genetic algorithm of determining cycle time for printed circuit board assembly lines. Eur J Oper Res 128:175–184

    Article  MATH  Google Scholar 

  54. Kim YK, Kim Y, Kim YJ (2000) Two-sided assembly line balancing, a genetic algorithm approach. Production Planning and Control 11(1):44–53

    Article  Google Scholar 

  55. Ponnambalam SG, Aravidan P, Naidu GM (2000) A multiobjective genetic algorithm for solving assembly line balancing problems. Int J Adv Manuf Technol 16(5):297–302

    Article  Google Scholar 

  56. Sabuncuoglu I, Erel E, Tanyer M (2000) Assembly line balancing using genetic algorithms. J Intell Manuf 11(3):295–310

    Article  Google Scholar 

  57. Yu J, Yin Y (2010) Assembly line balancing based on an adaptive genetic algorithm. Int J Adv Manuf Technol 48(1–4):347–354

    Article  Google Scholar 

  58. Baykasoğlu A, Özbakır L (2006) Stochastic U-line balancing using genetic algorithms. Int J Adv Manuf Technol 32(1–2):139–147

    Google Scholar 

  59. Chen RS, Lu KY, Yu SC (2002) A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Eng Appl Artif Intell 15(5):447–457

    Article  Google Scholar 

  60. Guo ZX, Wong WK, Leung SYS, Fan JT (2009) Intelligent production control decision support system for flexible assembly lines. Expert Systems Appl 36(3):4268–4277

    Article  Google Scholar 

  61. Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF (2009) A genetic-algorithm-based optimization model for scheduling flexible assembly lines. Int J Adv Manuf Technol 36(1–2):156–168

    Google Scholar 

  62. Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF (2009) A genetic-algorithm-based optimization model for solving the flexible assembly line balancing problem with work sharing and workstation revisiting. IEEE Transactions on Systems, Man and Cybernetics Part C-Applications and Reviews 38(2):218–228

    Article  Google Scholar 

  63. von Laszewski G (1991) Intelligent structural operator for k-way group partitioning problem. In: Belew R, Booker L (eds) Proceedings of the 4th international conference on genetic algorithms. Morgan Kauffman, San Diego, pp 45–52

    Google Scholar 

  64. Lee TO, Kim Y, Kim YK (2001) Two-sided assembly line balancing to maximize work relatedness and slackness. Comput Ind Eng 40:273–292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rabbani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabbani, M., Moghaddam, M. & Manavizadeh, N. Balancing of mixed-model two-sided assembly lines with multiple U-shaped layout. Int J Adv Manuf Technol 59, 1191–1210 (2012). https://doi.org/10.1007/s00170-011-3545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3545-6

Keywords

Navigation