Skip to main content
Log in

Multicriteria optimization of cutting parameters in turning of UD-GFRP materials considering sensitivity

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a new multicriteria optimization approach is proposed for the selection of the optimal values of cutting conditions in machining. This approach aims to handle the possible manufacturing errors in design stage. These errors are taken into consideration as change in design parameters and the design most robust to change is selected as the optimum design. Machining of a glass fiber composite material is chosen in case studies. Experiments on the unidirectional glass fiber reinforced composite material are performed to investigate the effect of cutting speed, feed, and cutting depth on the cutting forces. Also, material removal rate values are obtained. Minimizing cutting forces and maximizing the material removal are considered as objectives. It is believed that the used method provides a robust way of looking at the optimum parameter selection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim HS, Ehmann KF (1993) A cutting force model for face milling operations. Int J Mach Tool Des Res 33:651–673. doi:10.1016/0890-6955(93)90099-G

    Article  Google Scholar 

  2. Işık B (2008) Experimental investigations of surface roughness in orthogonal turning of unidirectional glass-fiber reinforced plastic composites. Int J Adv Manuf Technol 37:42–48. doi:10.1007/s00170-007-0946-7

    Article  Google Scholar 

  3. Arul S, Raj DS, Vijayaraghavan L, Malhotra SK, Krishnamurthy R (2006) Modeling and optimization of process parameters for defect toleranced drilling of GFRP composites. Mater Manuf Process 21(4):357–365. doi:10.1080/10426910500411587

    Article  Google Scholar 

  4. Palanikumar K (2006) Cutting parameters optimization for surface roughness in machining of GFRP composites using Taguchi’s method. J Reinf Plast Compos 25:1739–1751. doi:10.1177/0731684406068445

    Article  Google Scholar 

  5. Palanikumar K, Karunamoorthy L, Karthikeyan R (2006) Multiple performance optimization of machining parameters on the machining of GFRP composites using carbide (K10) tool. Mater Manuf Process 21(8):846–852 .doi:10.1080/03602550600728166

    Article  Google Scholar 

  6. Sakuma K, Seto M (1983) Tool wear in cutting glass-fiber-reinforced plastics. Bull JSME 26(218):1420–1427

    Google Scholar 

  7. Sakuma K, Seto M, Taniguchi M (1985) Tool wear in cutting carbon-fiber-reinforced plastics. Bull JSME 28(245):2781–2788

    Google Scholar 

  8. Kim KS, Lee DG, Kwak YK (1990) Cutting (milling) characteristic’s of carbon fiber/epoxy composites. Trans Korean Soc Mech Eng 14(1):237–240

    Google Scholar 

  9. Linbin G (1982) Handbook of composites. Van Nostrand Reinhold, New York, pp 625–629

    Google Scholar 

  10. Wang XM, Zhang LC (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J Mach Tools Manuf 43(10):1015–1022. doi:10.1016/S0890-6955(03)00090-7

    Article  Google Scholar 

  11. Bagci E, Işık B (2006) Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN. Int J Adv Manuf Technol 31:10–17. doi:10.1007/s00170-005-0175-x

    Article  Google Scholar 

  12. Rao GVG, Mahajan P, Bhatnagar N (2007) Micro-mechanical modeling of machining of FRP composites—cutting force analysis. Compos Sci Technol 67:579–593. doi:10.1016/j.compscitech.2006.08.010

    Article  Google Scholar 

  13. Arbizu IP, Pérez CJL (2003) Surface roughness prediction by factorial design of experiments in turning processes. J Mater Process Technol 143–144:390–396. doi:10.1016/S0924-0136(03)00407-2

    Article  Google Scholar 

  14. Myers RH, Montgomery DC (1995) Response surface methodology process and product optimization using designed experiments. Wiley, New York, USA

    MATH  Google Scholar 

  15. Hwang CL, Masud ASM (1979) Multiple objective decision making methods and applications. Springer, Berlin

    MATH  Google Scholar 

  16. Stadler W (1984) Multicriteria optimization in mechanics (a survey). Appl Mech Rev 37(3):277

    Google Scholar 

  17. Radford AD, Gero JS, Roseman MA, Balachandran M (1985) Pareto optimization as a computer aided design tool. In: Gero JS (ed) Optimization in computer-aided design. Springer, Berlin, pp 47–69

    Google Scholar 

  18. Lee KY, El-Sharkawi MA (eds) (2008) Modern heuristic optimization techniques: theory and applications to power systems. Wiley, New York

  19. Kentli A (2001) Multiobjective optimization of axially loaded non-prismatic columns. MSc thesis, Marmara University Institute for Graduate Studies in Pure and Applied Sciences, Istanbul, Turkey

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Işık.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Işık, B., Kentli, A. Multicriteria optimization of cutting parameters in turning of UD-GFRP materials considering sensitivity. Int J Adv Manuf Technol 44, 1144–1153 (2009). https://doi.org/10.1007/s00170-009-1927-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-1927-9

Keywords

Navigation