Skip to main content
Log in

Multi-objective production scheduling: a survey

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The real life scheduling problems often have several conflicting objectives. The solutions of these problems can provide deeper insights to the decision maker than those of single-objective problems. However, the literature of multi-objective scheduling is notably sparser than that of single-objective scheduling. Since the survey paper on multi-objective and bi-objective scheduling was conducted by Nagar et al. in 1995, there has been an increasing interest in multi-objective production scheduling, especially in multi-objective deterministic problem. The goal of this paper was to provide an extensive review of the literature on the scheduling problems with multiple objectives in the past 13 years. This paper also presents some problems receiving less attention than the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagar A, Haddock J, Heragu S (1995) Multiple and bicriteria scheduling: a literature survey. Eur J Oper Res 81:88–104 doi:10.1016/0377-2217(93)E0140-S

    Article  MATH  Google Scholar 

  2. T’Kindt V, Billaut J, Proust C (2001) Multicriteria scheduling problems: a survey. RAIRO Oper Res 35:143–163

    Article  MATH  MathSciNet  Google Scholar 

  3. Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167:592–623 doi:10.1016/j.ejor.2004.07.011

    Article  MATH  MathSciNet  Google Scholar 

  4. Knowles JD, Corne DW (2000) Approximating the non-dominated front using the Pareto archive evolutionary strategy. Evol Comput 8(2):149–172 doi:10.1162/106365600568167

    Article  Google Scholar 

  5. Zitzler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271 doi:10.1109/4235.797969

    Article  Google Scholar 

  6. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm Tech-Rep. Swiss Federal Institute of Technology, Lausanne, Switzerland, p 103

    Google Scholar 

  7. Köksalan M, Keha AB (2003) Using genetic algorithms for single-machine bicriteria scheduling problems. Eur J Oper Res 145:543–556 doi:10.1016/S0377-2217(02)00220-5

    Article  MATH  Google Scholar 

  8. Gupta AK, Sivakumar AI (2005) Single machine scheduling with multiple objectives in semiconductor manufacturing. Int J Adv Manuf Technol 26:950–958 doi:10.1007/s00170-004-2074-y

    Article  Google Scholar 

  9. Azizoglu M, Kondakci S, Köksalan M (2003) Single machine scheduling with maximum earliness and number tardy. Comput Ind Eng 45:257–268 doi:10.1016/S0360-8352(03)00034-2

    Article  Google Scholar 

  10. Jolai F, Rabbani M, Amalnick S, Dabaghi A, Dehghan M, Parast MY (2007) Genetic algorithm for bi-criteria single machine scheduling problem of minimizing maximum earliness and number of tardy jobs. Appl Math Comput 194:552–560 doi:10.1016/j.amc.2007.04.063

    Article  MathSciNet  Google Scholar 

  11. Haral U, Chen R-W, Ferrell WGJ, Kurz MB (2007) Multiobjective single machine scheduling with non-traditional requirements. Int J Prod Econ 106:574–484 doi:10.1016/j.ijpe.2006.06.018

    Article  Google Scholar 

  12. Eren T, Güner E (2006) A bicriteria scheduling with sequence-dependent setup times. Appl Math Comput 179:378–385 doi:10.1016/j.amc.2005.11.112

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen W-J (2007) An efficient algorithm for scheduling jobs on a machine with periodic maintenance. Int J Adv Manuf Technol 34:1173–1182 doi:10.1007/s00170-006-0689-x

    Article  Google Scholar 

  14. Suresh V, Chaudhuri D (1996) Bicriteria scheduling problem for unrelated parallel machines. Comput Ind Eng 30:77–82 doi:10.1016/0360-8352(95)00028-3

    Article  Google Scholar 

  15. T’kindt V, Billaut J-C, Proust C (2001) Solving a bicriteria scheduling on unrelated parallel machines occurring in the glass bottle industry. Eur J Oper Res 135:42–49 doi:10.1016/S0377-2217(00)00288-5

    Article  MATH  Google Scholar 

  16. Cochran JK, Horng S-M, Fowler JW (2003) A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Comput Oper Res 30:1087–1102 doi:10.1016/S0305-0548(02)00059-X

    Article  MATH  MathSciNet  Google Scholar 

  17. Murata T, Ishibuchi H, Tanaka H (1996) Multi-objective genetic algorithm and its applications to flow shop scheduling. Comput Ind Eng 30:957–968 doi:10.1016/0360-8352(96)00045-9

    Article  Google Scholar 

  18. Chang P-C, Chen S-H, Lin K-L (2005) Two-phase sub-population genetic algorithm for parallel- machine scheduling problem. Expert Syst Appl 29:705–712 doi:10.1016/j.eswa.2005.04.033

    Article  Google Scholar 

  19. Fonseca CM, Fleming PJ (1993) Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. Proceedings of the Fifth international Conference on Genetic algorithms. San Mateo, California, pp 416–423

  20. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithms: NSGA2. IEEE Trans Evol Comput 6(2):182–197 doi:10.1109/4235.996017

    Article  Google Scholar 

  21. Chang P-C, Chen S-H, Hsieh J-C (2006) A global archive sub-population genetic algorithm with adaptive strategy in multi-objective parallel-machine scheduling problem. Proceedings of International Conference on Natural Computation, pp 730–739

  22. Eren T (2008) A bicriteria parallel machine scheduling with a learning effect of setup and removal times. Appl Math Model (in press)

  23. Danneberg D, Tautenhahn T, Werner F (1999) A comparison of heuristic algorithms for flow shop scheduling problems with setup times and limited batch size. Math Comput Model 29:101–126 doi:10.1016/S0895-7177(99)00085-0

    Article  MATH  MathSciNet  Google Scholar 

  24. Sivrikaya-Serifoğlu F, Ulusoy G (1998) A bicriteria two-machine permutation flowshop problem. Eur J Oper Res 107:414–430 doi:10.1016/S0377-2217(97)00338-X

    Article  MATH  Google Scholar 

  25. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multi-objective permutation flow shop. IEEE Trans Evol Comput 17(2):204–223 doi:10.1109/TEVC.2003.810752

    Article  Google Scholar 

  26. Geiger MJ (2007) On operators and search space topology in multi-objective flow shop scheduling. Eur J Oper Res 181:195–206 doi:10.1016/j.ejor.2006.06.010

    Article  MATH  MathSciNet  Google Scholar 

  27. Rajendran C, Ziegler H (2004) Ant-colony algorithms for permutation flow shop scheduling to minimize makespan/total flowtime of jobs. Eur J Oper Res 155:426–438 doi:10.1016/S0377-2217(02)00908-6

    Article  MATH  MathSciNet  Google Scholar 

  28. Stuetzle T (1998) An ant approach for the flow shop problem. Proceedings of European Congress on Intelligent Techniques and Soft Computing (EUFIT’98). Verlag Mainz, Aachen, Germany, pp 1560–1564

  29. Pasia JM, Hartl RF, Doerner KF (2006) Solving a bi-objective flowshop scheduling problem by Pareto-ant colony optimization. Proceedings of M. Dorigo et al. (eds.) ANTS, pp 294–305

  30. Loukil T, Teghem J, Tuyttens D (2005) Solving multi-objective production scheduling problems using metaheuristics. Eur J Oper Res 161:42–61 doi:10.1016/j.ejor.2003.08.029

    Article  MATH  MathSciNet  Google Scholar 

  31. Varadharajan TK, Rajendran C (2005) A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur J Oper Res 167:772–795 doi:10.1016/j.ejor.2004.07.020

    Article  MATH  MathSciNet  Google Scholar 

  32. Armentano VA, Arroyo JEC (2004) An application of a multi-objective tabu search algorithm to a bi-criteria flow shop problem. J Heur 10:463–481 doi:10.1023/B:HEUR.0000045320.79875.e3

    Article  MATH  Google Scholar 

  33. Basseur M (2006) Design of cooperative algorithms for multi-objective optimization: application to the flow shop scheduling problem. Quart J Oper Res 4:255–258

    Article  MATH  MathSciNet  Google Scholar 

  34. Pasupathy T, Rajendran C, Suresh RK (2006) A multi-objective genetic algorithm for searching in flow shop to minimize the makespan and the total flow time of jobs. Int J Adv Manuf Technol 27:804–815 doi:10.1007/s00170-004-2249-6

    Article  Google Scholar 

  35. Rahimi-Vahed AR, Mirghorbani SM (2007) A multi-objective particle swarm for a flow shop scheduling problem. J Comb Optim 13:79–102 doi:10.1007/s10878-006-9015-7

    Article  MATH  MathSciNet  Google Scholar 

  36. Guo WZ, Chen GL, Min H, Chen S (2007) A discrete particle swarm optimization algorithm for the multi-objective permutation flow shop sequencing problem. Proceeding of International Conference on Fuzzy Information and Engineering, pp 323–331

  37. Qian B, Wang L, Huang D-X, Wang W-L, Wang X (2009) An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers. Comput Oper Res 36:209–233

    Article  MATH  Google Scholar 

  38. Allahverdi A (2003) The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime. Eur J Oper Res 147:373–396 doi:10.1016/S0377-2217(02)00253-9

    Article  MATH  MathSciNet  Google Scholar 

  39. Allahverdi A (2004) A new heuristic for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness. Comput Oper Res 31:157–180 doi:10.1016/S0305-0548(02)00143-0

    Article  MATH  MathSciNet  Google Scholar 

  40. Allahverdi A, Aldowaisan T (2004) No-wait flowshops with bicriteria of makespan and maximum lateness. Eur J Oper Res 152:132–147 doi:10.1016/S0377-2217(02)00646-X

    Article  MATH  MathSciNet  Google Scholar 

  41. Allahverdi A, Aldowaisan T (2002) No-wait flowshops with bicriteria of makespan and total completion time. J Oper Res Soc 53:1004–1015 doi:10.1057/palgrave.jors.2601403

    Article  MATH  Google Scholar 

  42. Allahverdi A, Mittenthal J (1998) Dual criteria scheduling on a two-machine flowshop subject to random breakdowns. Int Trans Oper Res 5:317–324 doi:10.1016/S0969-6016(97)00042-7

    Article  Google Scholar 

  43. Allahverdi A (2001) The tricriteria two-machine flowshop scheduling problem. Int Trans Oper Res 8:403–425 doi:10.1111/1475-3995.00273

    Article  MATH  MathSciNet  Google Scholar 

  44. Allahverdi A, Savsar M (2002) Scheduling on three-serial duplicate stations in assembly lines with multiple criteria. Int J Ind Eng 9:265–274

    Google Scholar 

  45. Allahverdi A, Al-Anzi FS (2008) The two-stage assembly flowshop scheduling problem with bicriteria of makespan and mean completion time. Int J Adv Manuf Technol 37:166–177 doi:10.1007/s00170-007-0950-y

    Article  Google Scholar 

  46. Yeh WC, Allahverdi A (2004) A branch-and-bound algorithm for the three-machine flowshop scheduling problem with bicriteria of makespan and total flowtime. Int Trans Oper Res 11:341–359 doi:10.1111/j.1475-3995.2004.00461.x

    Article  MathSciNet  Google Scholar 

  47. Rajendran C (1995) Heuristics for scheduling in flow shop with multiple objectives. Eur J Oper Res 82:540–555 doi:10.1016/0377-2217(93)E0212-G

    Article  MATH  Google Scholar 

  48. Ravindran D, Noorul Haq A, Selvakuar SJ, Sivaraman R (2005) Flow shop scheduling with multiple objective. Int J Adv Manuf Technol 25:1007–1012 doi:10.1007/s00170-003-1926-1

    Article  Google Scholar 

  49. Chou F-D, Lee C-F (1999) Two-machine flowshop scheduling with bicriteria problem. Comput Ind Eng 36:549–564 doi:10.1016/S0360-8352(99)00149-7

    Article  Google Scholar 

  50. Nagar A, Haddock J, Heragu S (1996) A combined branch-and-bound and genetic algorithm based approach for flow shop scheduling problem. Ann Oper Res 63:397–414 doi:10.1007/BF02125405

    Article  MATH  Google Scholar 

  51. Basseur M, Lemesre J, Dhaenens C, Talbi E-G (2004) Cooperation between branch and bound and evolutionary approaches to solve a bi-objective flow shop problem. Proceedings of Third International Workshop on Experimental and Efficient Algorithms, pp 72–86

  52. Sayin S, Karabati S (1999) A bicriteria approach to the two-machine flow shop scheduling problem. Eur J Oper Res 113:435–449 doi:10.1016/S0377-2217(98)00009-5

    Article  MATH  Google Scholar 

  53. Toktas B, Azizoglu M, Koksalan SK (2004) Two-machine flow shop scheduling with two criteria: maximum earliness and makespan. Eur J Oper Res 157:286–295 doi:10.1016/S0377-2217(03)00192-9

    Article  MATH  Google Scholar 

  54. Neppalli VR, Chen C-L, Gupta JND (1996) Genetic algorithms for the two-stage bicriteria flowshop problem. Eur J Oper Res 95:356–373 doi:10.1016/0377-2217(95)00275-8

    Article  MATH  Google Scholar 

  55. Sridhar J, Rajendran C (1996) Scheduling in flow shop and cellular manufacturing systems with multiple objectives—a genetic algorithmic approach. Prod Plann Contr 7:374–382 doi:10.1080/09537289608930365

    Article  Google Scholar 

  56. Chang P-C, Chen S-H, Liu C-H (2007) Sub-population genetic algorithm with mining gene structures for multi-objective flow shop scheduling problems. Expert Syst Appl 33:762–771 doi:10.1016/j.eswa.2006.06.019

    Article  Google Scholar 

  57. Ishibuchi H, Murata T (1998) A multi-objective genetic local search and its application to flow shop scheduling. IEEE Trans Syst Man Cybern Part C 28(3):392–403 doi:10.1109/5326.704576

    Article  Google Scholar 

  58. Talbi EG, Rahoual M, Mabed MH, Dhaenens C (2001) A hybrid evolutionary approach for multi-criteria optimization problems: application to flow shop. Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization. Springer, pp 416–428

  59. Arroyo JEC, Armentano VA (2005) Genetic local search for multi-objective flow shop scheduling problems. Eur J Oper Res 167:717–738 doi:10.1016/j.ejor.2004.07.017

    Article  MATH  MathSciNet  Google Scholar 

  60. Brizuela C, Sannomiya N, Zhao Y (2001) Multi-objective flow shop: preliminary results. Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization. Springer, pp 443–457

  61. Ponnambalam SG, Jagannathan H, Kataria M, Gadicherla A (2004) A TSP-GA multi-objective algorithm for flow-shop scheduling. Int J Adv Manuf Technol 23:909–915 doi:10.1007/s00170-003-1731-x

    Article  Google Scholar 

  62. Li B-B, Wang L (2007) A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling. IEEE Trans Syst Man Cybern Part B. 37:576–591 doi:10.1109/TSMCB.2006.887946

    Article  Google Scholar 

  63. Eren T, Güner E (2006) A bicriteria flowshop scheduling problem with setup time. Appl Math Comput 183:1292–1300 doi:10.1016/j.amc.2006.05.160

    Article  MATH  MathSciNet  Google Scholar 

  64. Eren T, Güner E (2008) A bicriteria flowshop scheduling with a learning effect. Appl Math Model 32(9):1719–1733 doi:10.1016/j.apm.2007.06.009

    Google Scholar 

  65. Eren T, Güner E (2008) The triceiteria flowshop scheduling problem. Int J Adv Manuf Technol 36:1210–1220 doi:10.1007/s00170-007-0931-1

    Article  Google Scholar 

  66. Nawaz M, Enscore EE, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow shop sequencing problem. Omega 11:91–95 doi:10.1016/0305-0483(83)90088-9

    Article  Google Scholar 

  67. Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei AH (2007) A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Inf Sci 177:5072–5090 doi:10.1016/j.ins.2007.06.001

    Article  MATH  MathSciNet  Google Scholar 

  68. Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei AH (2008) Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int J Adv Manuf Technol 36:968–981 doi:10.1007/s00170-006-0906-7

    Article  Google Scholar 

  69. Li JF, Zhang W (2006) Solution to multi-objective optimization of flow shop problem based on ACO algorithm. Proceedings of International Conference on Computational Intelligence and Security, pp 417–420

  70. Yagmahan B, Yenisey MM (2008) Ant colony optimization for multi-objective flow shop scheduling problem. Comput Ind Eng 54:411–420 doi:10.1016/j.cie.2007.08.003

    Article  Google Scholar 

  71. T’kindt V, Monmarché N, Tercinet F, Laügt D (2002) An ant colony optimization algorithm to solve a 2-machine bicriteria flow shop scheduling problem. Eur J Oper Res 142:250–257 doi:10.1016/S0377-2217(02)00265-5

    Article  MATH  Google Scholar 

  72. Ruiz R, Allahverdi A (2008) Minimizing the bicriteria of makespan and maximum tardiness with an upper bound on maximum tardiness. Comput Oper Res (in press)

  73. Noorul Haq A, Radha Ramanan T (2006) A bicriterian flow shop scheduling using artificial neural network. Int J Adv Manuf Technol 30:1132–1138 doi:10.1007/s00170-005-0135-5

    Article  Google Scholar 

  74. Mansouri SA, Hendizadeh SH Bicriteria scheduling of a two-machine flow shop with sequence-dependent setup times. Int J Adv Manuf Technol doi:10.1007/s00170-008-1439-z

  75. Liao CJ, Yu CJ, Joe CB (1997) Bicriterion scheduling in the two-machine flowshop. J Oper Res Soc 48:929–935

    Article  MATH  Google Scholar 

  76. Wei Z, Xu X-F, Deng S-C (2006) Evolutionary algorithm for solving multi-objective flow shop scheduling problem. Comput Integrated Manuf Syst 12:1227–1234 (in Chinese)

    Google Scholar 

  77. Low C, Wu T-H, Hsu C-M (2005) Mathematical modeling of multi-objective job shop scheduling with dependent setups and re-entrant operations. Int J Adv Manuf Technol 27:181–189 doi:10.1007/s00170-004-2137-0

    Article  Google Scholar 

  78. Ponnambalam SG, Ramkumar V, Jawahar N (2001) A multi-objective genetic algorithm for job shop scheduling. Prod Plann Control 12(8):764–774 doi:10.1080/09537280110040424

    Article  Google Scholar 

  79. Giffler B, Thompson GL (1960) Algorithm for solving production scheduling problems. Oper Res 8:487–503

    Article  MATH  MathSciNet  Google Scholar 

  80. Esquivel S, Ferrero S, Gallard R, Salto C, Alfonso H, Schütz M (2002) Enhanced evolutionary algorithm for single and multi-objective optimization in job shop scheduling problem. Knowl Syst 15:13–25 doi:10.1016/S0950-7051(01)00117-4

    Article  Google Scholar 

  81. Lei D, Wu Z (2005) Efficient multi-objective evolutionary algorithm for job shop scheduling. Chin J Mech Eng 18(4):494–497

    Article  MathSciNet  Google Scholar 

  82. Lei D, Wu Z (2006) Crowding-measure-based multi-objective evolutionary for job shop scheduling. Int J Adv Manuf Technol 30:112–117 doi:10.1007/s00170-005-0029-6

    Article  Google Scholar 

  83. Chiang T-C, Fu L-C (2006) Multiobjective job shop scheduling using genetic algorithm with cyclic fitness assignment. Proceedings of 2006 IEEE Congress on Evolutionary Computation, pp 16–21

  84. Petrovic D, Duenas A, Petrovic S (2007) Decision support tool for multi-objective job shop scheduling problems with linguistically quantified decision functions. Decis Support Syst 43:1527–1538 doi:10.1016/j.dss.2006.06.006

    Article  Google Scholar 

  85. Suresh RK, Mohanasundaram KM (2006) Pareto archived simulated annealing for job shop scheduling with multiple objectives. Int J Adv Manuf Technol 29:184–196 doi:10.1007/s00170-004-2492-x

    Article  Google Scholar 

  86. Lei D (2008) A Pareto archive particle swarm optimization for multi-objective job shop scheduling. Comput Ind Eng 54:960–971 doi:10.1016/j.cie.2007.11.007

    Article  Google Scholar 

  87. Qian B, Wang L, Huang D-X, Wang X (2008) Scheduling multi-objective job shops using a memetic algorithm based on differential evolution. Int J Adv Manuf Technol 35:1014–1027 doi:10.1007/s00170-006-0787-9

    Article  Google Scholar 

  88. Kleeman MP, Lamont GB (2007) Scheduling of flow-shop, job-shop and combined scheduling problems using MOEAs with fixed and variable length chromosomes. Stud Comput Intell 49:49–99 doi:10.1007/978-3-540-48584-1_3

    Article  Google Scholar 

  89. Vilcot G, Billaut J-C (2008) A tabu search and a genetic algorithm for solving bicriteria general job shop scheduling problem. Eur J Oper Res 190:398–411 doi:10.1016/j.ejor.2007.06.039

    Article  MATH  MathSciNet  Google Scholar 

  90. Zhu ZC, Ng KM, Ong HL (2007) An application of tabu search algorithm on cost-based job shop problem with multiple objectives. Proceeding of IEEE International Conference on Industrial Engineering and Engineering Management, pp 912–916

  91. Baykasoğlu A, Özbakir L, Sönmez A (2004) Using multiple objective tabu search and grammars to model and solve multi-objective flexible job shop scheduling problems. J Intell Manuf 15:777–785 doi:10.1023/B:JIMS.0000042663.16199.84

    Article  Google Scholar 

  92. Baykasoğlu A, Owen S, Gindy N (1999) A taboo search based approach to find the Pareto optimal set in multiple objective optimization. J Eng Optim 31:731–748 doi:10.1080/03052159908941394

    Article  Google Scholar 

  93. Kacem I, Hammadi S, Borne P (2002a) Approach by localization and multi-objective evolutionary optimization for flexible job shop scheduling problems. IEEE Trans Syst Man Cybern PART C 32(1):1–13 doi:10.1109/TSMCC.2002.1009117

    Article  Google Scholar 

  94. Gao J, Gen M, Sun L, Zhao X (2007) A hybrid of genetic algorithm and bottleneck shifting for multi-objective flexible job shop scheduling problems. Comput Ind Eng 53:149–162 doi:10.1016/j.cie.2007.04.010

    Article  MATH  Google Scholar 

  95. Xia W, Wu Z (2005) An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 48:409–425 doi:10.1016/j.cie.2005.01.018

    Article  Google Scholar 

  96. Xing L-N, Chen Y-W, Yang K-W (2008) Multi-objective flexible job shop schedule: design and evaluation by simulation modeling. Appl Soft Comput (in press)

  97. Kacem I, Hammadi S, Borne P (2002b) Pareto-Optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math Comput Simul 60:245–276 doi:10.1016/S0378-4754(02)00019-8

    Article  MATH  MathSciNet  Google Scholar 

  98. Wu XL, Sun SD, Niu GG, Zhai YN (2006) The performance analysis of a multi-objective immune genetic algorithm for flexible job shop scheduling. International Federation for Information Processing, pp 914–919

  99. Liu H, Abraham A, Choi O, Moon SH (2006) Variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems. Proceedings of SEAL, pp 197–204

  100. Vicot G, Billaut J-C, Esswein C (2006) A genetic algorithm for a bicriteria flexible job shop scheduling problem. 2006 International Conference on Service Systems and Service Management, pp 1240–1244

  101. Tay JC, Ho NB (2008) Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput Ind Eng 54:453–473 doi:10.1016/j.cie.2007.08.008

    Article  Google Scholar 

  102. Loukil T, Teghem J, Fortemps P (2007) A multi-objective production scheduling case study solved by simulated annealing. Eur J Oper Res 179:709–722 doi:10.1016/j.ejor.2005.03.073

    Article  MATH  Google Scholar 

  103. Sankar SS, Ponnanbalam SG (2003) A multiobjective genetic algorithm for scheduling a flexible manufacturing systems. Int J Adv Manuf Technol 22:229–236 doi:10.1007/s00170-002-1464-2

    Article  Google Scholar 

  104. Sakawa M, Kubota R (2000) Fuzzy programming for multi-objective job shop scheduling with fuzzy processing time and fuzzy due date through genetic algorithm. Eur J Oper Res 120:393–407 doi:10.1016/S0377-2217(99)00094-6

    Article  MATH  MathSciNet  Google Scholar 

  105. Li FM, Zhu YL, Yin CW, Song XY (2005) Fuzzy programming for multi-objective fuzzy job shop scheduling with alternative machines through genetic algorithm. In: Wang L, Chen K, Ong YS (eds) Advance in natural computation. Springer, Berlin, pp 992–1004

    Google Scholar 

  106. Lei DM (2008) Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems. Int J Adv Manuf Technol 37:157–165 doi:10.1007/s00170-007-0945-8

    Article  Google Scholar 

  107. Javadi B, Saidi-Mehrabad M, Haji A, Mahdavi I, Jolai F, Mahdavi-Amiri N (2008) No-wait flow shop scheduling using fuzzy multi-objective linear programming. J Franklin Inst 345(5):452–467

    Google Scholar 

  108. Xing YJ, Wang ZQ, Sun J, Meng JJ (2006) A multi-objective fuzzy genetic algorithm for job-shop scheduling problems. 2006 International Conference on Computational Intelligence and Security, pp 398–401

  109. Ghrayeb OA (2003) A bi-criteria optimization: minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems. Appl Soft Comput 2:197–210 doi:10.1016/S1568-4946(02)00069-8

    Article  Google Scholar 

  110. Lei DM, Xiong HJ (2007) An efficient evolutionary algorithm for multi-objective stochastic job shop scheduling. Sixth International Conference on Machine Learning and Cybernetics, pp 867–872

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, D. Multi-objective production scheduling: a survey. Int J Adv Manuf Technol 43, 926–938 (2009). https://doi.org/10.1007/s00170-008-1770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1770-4

Keywords

Navigation