Skip to main content
Log in

A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses.

Methods

Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°).

Results

The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes.

Conclusions

The results suggested that the tibial component inclination might be favourable to 7°–10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important clinical significance, guiding orthopaedic surgeon after the best angle to cut bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bloebaum RD, Zou L, Bachus KN, Shea KG, Hofmann AA, Dunn HK (1997) Analysis of particles in acetabular components from patients with osteolysis. Clin Orthop Relat Res 338:109–118

    Article  PubMed  Google Scholar 

  2. Peters PC, Engh GA, Dwyer KA, Vinh TN (1992) Osteolysis after total knee arthroplasty without cement. J Bone Joint Surg Am 74(7):864–876

    PubMed  Google Scholar 

  3. Brach del Prever EM, Bistolfi A, Bracco P, Costa L (2009) UHMWPE for arthroplasty: past or future? J Orthopaed Traumatol 10:1–8

    Article  Google Scholar 

  4. McKellop HA, Shen FW, Lu B (1999) Development of an extremely wear-resistant ultra-high molecular weight polyethylene for total hip replacements. J Orthop Res 17:157–167

    Article  CAS  PubMed  Google Scholar 

  5. Muratoglu OK, Bragdon CR, Jasty M (1995) The effect of radiation damage on the wear rate of UHMWPE components. In: Symposium on characterization and properties of ultra-high molecular weight polyethylene, ASTM conference

  6. Akagi M, Asano T, Clarke IC, Niiyama N, Kyomoto N, Nakamura T (2006) Wear and toughness of crosslinked polyethylene for total knee replacements: a study using a simulator and small-punch testing. J Orthop Res 24:2021–2027

    Article  PubMed  Google Scholar 

  7. Blunn GW, Walker PS, Joshi A, Hardinge K (1991) The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop Relat Res 273:253–260

    PubMed  Google Scholar 

  8. Lee HY, Kim SJ, Kang KT, Kim SH, Park KK (2012) The effect of tibial posterior slope on contact force and ligaments stresses in posterior-stabilized total knee arthroplasty-explicit finite element analysis. Knee Surg Relat Res 24(2):91–98

    Article  PubMed Central  PubMed  Google Scholar 

  9. Panni AS, Cerciello S, Vasso M, Tartarone M (2009) Stiffness in total knee arthroplasty. J Orthop Traumatol 10(3):111–118

    Article  Google Scholar 

  10. Matsuda S, Miura H, Nagamine R, Urabe K, Ikenoue T, Okazaki K, Iwamoto Y (1999) Posterior tibial slope in the normal and varus knee. Am J Knee Surg 12(3):165–168

    CAS  PubMed  Google Scholar 

  11. Bai B, Baez J, Testa N, Kummer FJ (2000) Effect of posterior cut angle on tibial component loading. J Arthroplasty 15(7):916–920

    Article  CAS  PubMed  Google Scholar 

  12. King AI (1984) A review of biomechanical models. J Biomech Eng 106(2):97–104

    Article  CAS  PubMed  Google Scholar 

  13. Baltzopoulos V (1995) Muscular and tibiofemoral joint forces during isokinetic concentric knee extension. Clin Biomech (Bristol, Avon) 10(4):208–214

    Article  Google Scholar 

  14. Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ (2002) Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 35(2):267–275

    Article  CAS  PubMed  Google Scholar 

  15. Kellis E (2001) Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors. Clin Biomech (Bristol, Avon) 16(3):229–236

    Article  CAS  Google Scholar 

  16. Piazza SJ, Delp SL (2001) Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J Biomech Eng 123(6):599–606

    Article  CAS  PubMed  Google Scholar 

  17. Taylor M, Barrett DS (2003) Explicit finite element simulation of eccentric loading in total knee replacement. Clin Orthop Relat Res 414:162–171

    Article  PubMed  Google Scholar 

  18. Zheng N, Fleisig GS, Escamilla RF, Barrentine SW (1998) An analytical model of the knee for estimation of internal forces during exercise. J Biomech 31(10):963–967

    Article  CAS  PubMed  Google Scholar 

  19. Godest AC, de Cloke CS, Taylor M, Gregson PJ, Keane AJ, Sathasivan S, Walker PS (2000) A computational model for the prediction of total knee replacement kinematics in the sagittal plane. J Biomech 33(4):435–442

    Article  CAS  PubMed  Google Scholar 

  20. Liau JJ, Cheng CK, Huang CH, Lo WH (2002) The effect of malalignment on stresses in polyethylene component of total knee prostheses—a finite element analysis. Clin Biomech (Bristol, Avon) 17(2):140–146

    Article  Google Scholar 

  21. Rawlinson JJ, Bartel DL (2002) Flat medial-lateral conformity in total knee replacements does not minimize contact stresses. J Biomech 35(1):27–34

    Article  PubMed  Google Scholar 

  22. Sathasivam S, Walker PS (1997) A computer model with surface friction for the prediction of total knee kinematics. J Biomech 30(2):177–184

    Article  CAS  PubMed  Google Scholar 

  23. Villa T, Migliavacca F, Gastaldi D, Colombo M, Pietrabissa R (2004) Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations. J Biomech 37(1):45–53

    Article  PubMed  Google Scholar 

  24. Yang RS, Lin HJ (2001) Contact stress on polyethylene components of a new rotating hinge with a spherical contact surface. Clin Biomech (Bristol, Avon) 16(6):540–546

    Article  CAS  Google Scholar 

  25. Fernandes PR, Folgado J, Jacobs C, Pellegrini V (2002) A contact model with ingrowth control for bone remodeling around cementless stems. J Biomech 35(2):167–176

    Article  CAS  PubMed  Google Scholar 

  26. Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO (1993) ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech 26(4–5):369–382

    Article  PubMed  Google Scholar 

  27. Jia X, Zhang M, Li X, Lee WC (2005) A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees. Clin Biomech (Bristol, Avon) 20(6):630–635

    Article  Google Scholar 

  28. Lee WC, Zhang M, Jia X, Cheung JT (2004) Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med Eng Phys 26(8):655–662

    Article  PubMed  Google Scholar 

  29. Nyman JS, Hazelwood SJ, Rodrigo JJ, Martin RB, Yeh OC (2004) Long stemmed total knee arthroplasty with interlocking screws: a computational bone adaptation study. J Orthop Res 22(1):51–57

    Article  PubMed  Google Scholar 

  30. Genin P, Weill G, Julliard R (1993) The tibial slope. Proposal for a measurement method. J Radiol 74(1):27–33

    CAS  PubMed  Google Scholar 

  31. Seo SS, Kim CW, Kim JH, Min YK (2013) Clinical results associated with changes of posterior tibial slope in total knee arthroplasty. Knee Surg Relat Res 25(1):25–29

    Article  PubMed Central  PubMed  Google Scholar 

  32. Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A (1996) Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82(3):195–200

    CAS  PubMed  Google Scholar 

  33. Soyer J, Iborra JP, Pries P, Clarac JP (2001) Mid-term behavior of the bone fixation in non-cemented Miller-Galante 1 total knee arthroplasty. Rev Chir Orthop Reparatrice Appar Mot 87(1):40–49

    CAS  PubMed  Google Scholar 

  34. Wang ZW, Liu YL, Lin KJ, Qu TB, Dong X, Cheng CK, Hai Y (2012) The effects of implantation of tibio-femoral components in hyperextension on kinematics of TKA. Knee Surg Sports Traumatol Arthrosc 20(10):2032–2038

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are honoured to acknowledge the financial support of the Shanghai Natural Science Foundation (09410706100). The authors would like to thank Dr. Weiping Ren for his technical support in the experiments.

Conflict of interest

No conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomiao Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 2 (DOCX 4,803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Li, X., Fu, X. et al. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope. Knee Surg Sports Traumatol Arthrosc 23, 3330–3336 (2015). https://doi.org/10.1007/s00167-014-3144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3144-9

Keywords

Navigation