Skip to main content
Log in

Less femoral lift-off and better femoral alignment in TKA using computer-assisted surgery

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

A comparison has been made between navigation-assisted and conventional measured resection total knee arthroplasty (TKA), under the hypothesis that navigation assistance would improve the precision and consistency of component alignment and femoral component rotation.

Methods

The following radiographic parameters were measured: mechanical femorotibial angle, coronal and sagittal component angle, and femoral component rotation. Femoral condylar lift-off was checked by axial radiographs, and thresholds for outliers were set at 1.0 mm.

Results

Clinical results obtained using Knee Society and Hospital for Special Surgery systems were not statistically different. The mean mechanical femorotibial angle was 2.2° (SD: 0.9) in the conventional group and 1.7° (SD: 0.7) in navigation group (p = 0.001). The mean coronal femoral component angle was 89.2° (SD: 2.2) in conventional group and 90.4° (SD: 1.8) in navigation group (p = 0.006). The mean transepicondylar-posterior condylar axis angle was 1.7° (SD: 0.9) in conventional group and 1.2° (SD: 0.5) in navigation group (p = 0.008). Femoral condylar lift-off greater than 1 mm occurred more frequently (p = 0.000) in conventional group.

Conclusion

Coronal plane stability and precision of femoral component rotation were impacted by navigation system. The use of a navigation system with measured resection TKA can help optimize coronal stability and parallel component position.

Level of evidence

Retrospective case control study, Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akagi M, Yamashita E, Nakagawa T, Asano T, Nakamura T (2001) Relationship between frontal knee alignment and reference axes in the distal femur. Clin Orthop Relat Res 388:147–156

    Article  PubMed  Google Scholar 

  2. Bäthis H, Perlick L, Tingart M, Lüring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br 86(5):682–687

    Article  PubMed  Google Scholar 

  3. Bolognesi M, Hofmann A (2005) Computer navigation versus standard instrumentation for TKA: a single-surgeon experience. Clin Orthop Relat Res 440:162–169

    Article  PubMed  Google Scholar 

  4. Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg Sports Traumatol Arthrosc 20(7):1307–1322

    Article  PubMed  Google Scholar 

  5. Chin PL, Yang KY, Yeo SJ, Lo NN (2005) Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplast 20(5):618–626

    Article  Google Scholar 

  6. Dennis DA, Komistek RD, Walker SA, Cheal EJ, Stiehl JB (2001) Femoral condylar lift-off in vivo in total knee arthroplasty. J Bone Joint Surg Br 83(1):33–39

    Article  CAS  PubMed  Google Scholar 

  7. Dennis DA, Komistek RD, Kim RH, Sharma A (2010) Gap balancing versus measured resection technique for total knee arthroplasty. Clin Orthop Relat Res 468:102–107

    Article  PubMed  Google Scholar 

  8. D’Lima DD, Chen PC, Colwell CW Jr (2001) Polyethylene contact stresses, articular congruity, and knee alignment. Clin Orthop Relat Res 392:232–238

    Article  PubMed  Google Scholar 

  9. Figgie HE III, Goldberg VM, Heiple KG, Moller HS III, Gordon NH (1986) The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. J Bone Joint Surg Am 68(7):1035–1040

    PubMed  Google Scholar 

  10. Figgie HE III, Goldberg VM, Figgie MP, Inglis AE, Kelly M, Sobel M (1989) The effect of alignment of the implant on fractures of the patella after condylar total knee arthroplasty. J Bone Joint Surg Am 71(7):1031–1039

    PubMed  Google Scholar 

  11. Freeman MA, Todd RC, Bamert P, Day WH (1978) ICLH arthroplasty of the knee: 1968–1977. J Bone Joint Surg Br 60-B(3):339–344

    CAS  PubMed  Google Scholar 

  12. Green GV, Berend KR, Berend ME, Glisson RR, Vail TP (2002) The effects of varus tibial alignment on proximal tibial surface strain in total knee arthroplasty: the posteromedial hot spot. J Arthroplast 17(8):1033–1039

    Article  Google Scholar 

  13. Hernández-Vaquero D, Suarez-Vazquez A, Sandoval-Garcia MA, Noriega-Fernandez A (2010) Computer assistance increases precision of component placement in total knee arthroplasty with articular deformity. Clin Orthop Relat Res 468:1237–1241

    Article  PubMed  Google Scholar 

  14. Hvid I, Nielsen S (1984) Total condylar knee arthroplasty. Prosthetic component positioning and radiolucent lines. Acta Orthop Scand 55(2):160–165

    Article  CAS  PubMed  Google Scholar 

  15. Insall JN, Scott WN, Ranawat CS (1979) The total condylar prosthesis. A report of two hundred and twenty cases. J Bone Joint Surg Am 61(2):173–180

    CAS  PubMed  Google Scholar 

  16. Ishida K, Matsumoto T, Tsumura N, Kubo S, Kitagawa A, Chin T, Iguchi T, Kurosaka M, Kuroda R (2011) Mid-term outcomes of computer-assisted total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(7):1107–1112

    Article  PubMed  Google Scholar 

  17. Jennings LM, Bell CI, Ingham E, Komistek RD, Stone MH, Fisher J (2007) The influence of femoral condylar lift-off on the wear of artificial knee joints. Proc Inst Mech Eng H 221(3):305–314

    Article  CAS  PubMed  Google Scholar 

  18. Kanekasu K, Kondo M, Kadoya Y (2005) Axial radiography of the distal femur to assess rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 434:193–197

    Article  PubMed  Google Scholar 

  19. Kim YH, Kim JS, Yoon SH (2007) Alignment and orientation of the components in total knee replacement with and without navigation support. A prospective, randomized study. J Bone Joint Surg Br 89(4):471–476

    Article  PubMed  Google Scholar 

  20. Laskin RS (2008) The classic: total condylar knee replacement in patients who have rheumatoid arthritis. A ten-year follow-up study. 1990. Clin Orthop Relat Res 466:2589–2596

    Article  PubMed  Google Scholar 

  21. Lustig S, Lavoie F, Selmi TA, Servien E, Neyret P (2008) Relationship between the surgical epicondylar axis and the articular surface of the distal femur: an anatomic study. Knee Surg Sports Traumatol Arthrosc 16(7):674–682

    Article  PubMed  Google Scholar 

  22. Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 Press Fit Condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplast 16(5):635–640

    Article  CAS  Google Scholar 

  23. Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, Nabeyama R, Iwamoto Y (2004) Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res 22(1):104–109

    Article  PubMed  Google Scholar 

  24. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89(2):236–243

    Article  PubMed  Google Scholar 

  25. Novotny J, Gonzalez MH, Amirouche FM, Li YC (2001) Geometric analysis of potential error in using femoral intramedullary guides in total knee arthroplasty. J Arthroplast 16(5):641–647

    Article  CAS  Google Scholar 

  26. Reed SC, Gollish J (1997) The accuracy of femoral intramedullary guides in total knee arthroplasty. J Arthroplast 12(6):677–682

    Article  CAS  Google Scholar 

  27. Rottman SJ, Dvorkin M, Gold D (2005) Extramedullary versus intramedullary tibial alignment guides for total knee arthroplasty. Orthopedics 28(12):1445–1448

    PubMed  Google Scholar 

  28. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    Article  PubMed  Google Scholar 

  29. Sikorski JM (2008) Alignment in total knee replacement. J Bone Joint Surg Br 90(9):1121–1127

    CAS  PubMed  Google Scholar 

  30. Tashiro Y, Uemura M, Matsuda S, Okazaki K, Kawahara S, Hashizume M, Iwamoto Y (2012) Articular cartilage of the posterior condyle can affect rotational alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(8):1463–1469

    Article  PubMed  Google Scholar 

  31. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG (1994) Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res 299:31–43

    PubMed  Google Scholar 

  32. Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ (2005) The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech 38(2):349–355

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by AESCULAP AG, Tuttlingen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Jun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Lee, HJ., Jung, HJ. et al. Less femoral lift-off and better femoral alignment in TKA using computer-assisted surgery. Knee Surg Sports Traumatol Arthrosc 21, 2255–2262 (2013). https://doi.org/10.1007/s00167-012-2230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2230-0

Keywords

Navigation