Skip to main content
Log in

Biomechanical evaluation of a medial knee reconstruction with comparison of bioabsorbable interference screw constructs and optimization with a cortical button

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Current fixation techniques in medial knee reconstructions predominantly utilize interference screws alone for soft tissue graft fixation. The use of concurrent fixation techniques as part of a hybrid fixation technique has also been suggested to strengthen soft tissue fixation, although these hybrid fixation techniques have not been biomechanically validated. The purpose was to biomechanically evaluate two distal tibial superficial MCL graft fixation techniques that consisted of an interference screw alone and in combination with a cortical button. Furthermore, the aim was to compare interference screws of different constructs. Twenty-four porcine tibias (average bone mineral density of 1.3 ± 0.2 g/cm2; range, 1.0–1.6 g/cm2, measured by DEXA scan) were divided into 4 groups of six specimens each. Group Ia consisted of a 7 × 23-mm poly-l-lactide (PLLA) interference screw. Group Ib utilized a PLLA interference screw in combination with a cortical button. Group IIa consisted of a 7 × 23-mm composite 70% poly(l-lactide-co-D, l-lactide) and 30% biphasic calcium phosphate (BCP) interference screw. Group IIb also utilized a composite interference screw in combination with a cortical button. The specimens were biomechanically tested with cyclic (500 cycles, 50–250 N, 1 Hz) and load-to-failure (20 mm/min) parameters. During cyclic loading, a significant increase in stiffness was seen for the PLLA hybrid 29.6 (±6.9) N/mm fixation compared to the PLLA screw-only 21.2 (±3.8) N/mm group (P < 0.05). Failure loads were 407.8 (±77.9) N for the composite screw, 445 (±72.2) N for the PLLA screw-only, 473.9 (±69.6) N for the composite hybrid fixation, and 511.0 (±78.5) N for the PLLA hybrid fixation. The PLLA screw alone was found to provide adequate fixation for a superficial MCL reconstruction, and the use of a cortical suture button combined with the PLLA screw resulted in a stiffer fixation during cyclic loading. The current reconstruction superficial MCL graft fixation technique utilizing a PLLA interference screw alone serves as an adequate recreation of the native tibial superficial MCL strength. In addition, a hybrid fixation with a cortical button which lends additional cyclic stiffness to its fixation would be advisable for use in suboptimal fixation cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alfredson H, Nordstrom P, Lorentzon R (1996) Total and regional bone mass in female soccer players. Calcif Tissue Int 59:438–442

    CAS  PubMed  Google Scholar 

  2. Borden PS, Kantaras AT, Caborn DN (2002) Medial collateral ligament reconstruction with allograft using a double-bundle technique. Arthroscopy 18:E19

    Article  PubMed  Google Scholar 

  3. Bosworth DM (1952) Transplantation of the semitendinosus for repair of laceration of medial collateral ligament of the knee. J Bone Joint Surg Am 34-A:196–202

    CAS  PubMed  Google Scholar 

  4. Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DNM (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    PubMed  Google Scholar 

  5. Chang HC, Nyland J, Nawab A, Burden R, Caborn DN (2005) Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35-mm delta screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. Am J Sports Med 33:1057–1064

    Article  PubMed  Google Scholar 

  6. Charlick DA, Caborn DN (2000) Technical note: alternative soft-tissue graft preparation technique for cruciate ligament reconstruction. Arthroscopy 16:E20

    Article  CAS  PubMed  Google Scholar 

  7. Coobs BR, Wijdicks CA, Armitage BM, Spiridonov SI, Westerhaus BD, Johansen S, Engebretsen L, LaPrade RF (2010) An in vitro analysis of an anatomic medial knee reconstruction. Am J Sports Med 38:339–347

    Article  PubMed  Google Scholar 

  8. Daniels AU, Chang MK, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78

    Article  CAS  PubMed  Google Scholar 

  9. Feeley BT, Muller MS, Allen AA, Granchi CC, Pearle AD (2009) Biomechanical comparison of medial collateral ligament reconstructions using computer-assisted navigation. Am J Sports Med 37:1123–1130

    Article  PubMed  Google Scholar 

  10. Griffith CJ, LaPrade RF, Johansen S, Armitage B, Wijdicks C, Engebretsen L (2009) Medial knee injury: part 1, static function of the individual components of the main medial knee structures. Am J Sports Med 37:1762–1770

    Article  PubMed  Google Scholar 

  11. Griffith CJ, Wijdicks CA, LaPrade RF, Armitage BM, Johansen S, Engebretsen L (2009) Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Am J Sports Med 37:140–148

    Article  PubMed  Google Scholar 

  12. Haut RC, Powlison AC (1990) The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J Orthop Res 8:532–540

    Article  CAS  PubMed  Google Scholar 

  13. Honl M, Carrero V, Hille E, Schneider E, Morlock MM (2002) Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: an in vitro comparison of mechanical behavior under failure tensile loading and cyclic submaximal tensile loading. Am J Sports Med 30:549–557

    PubMed  Google Scholar 

  14. Hughston JC (1994) The importance of the posterior oblique ligament in repairs of acute tears of the medial ligaments in knees with and without an associated rupture of the anterior cruciate ligament. Results of long-term follow-up. J Bone Joint Surg Am 76:1328–1344

    CAS  PubMed  Google Scholar 

  15. Kannus P (1988) Long-term results of conservatively treated medial collateral ligament injuries of the knee joint. Clin Orthop Relat Res 226:103–112

    Google Scholar 

  16. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188

    PubMed  Google Scholar 

  17. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14:201–209

    Article  CAS  PubMed  Google Scholar 

  18. Lind M, Jakobsen BW, Lund B, Hansen MS, Abdallah O, Christiansen SE (2009) Anatomical reconstruction of the medial collateral ligament and posteromedial corner of the knee in patients with chronic medial collateral ligament instability. Am J Sports Med 37:1116–1122

    Article  PubMed  Google Scholar 

  19. Miyasaka KC, Daniel DM, Stone ML (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:3–8

    Google Scholar 

  20. Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29:67–71

    CAS  PubMed  Google Scholar 

  21. Nevill AM, Holder RL, Stewart AD (2003) Modeling elite male athletes’ peripheral bone mass, assessed using regional dual X-ray absorptiometry. Bone 32:62–68

    Article  CAS  PubMed  Google Scholar 

  22. Nordstrom P, Lorentzon R (1996) Site-specific bone mass differences of the lower extremities in 17-year-old ice hockey players. Calcif Tissue Int 59:443–448

    Article  CAS  PubMed  Google Scholar 

  23. Noyes FR, Barber-Westin SD (1995) The treatment of acute combined ruptures of the anterior cruciate and medial ligaments of the knee. Am J Sports Med 23:380–389

    Article  CAS  PubMed  Google Scholar 

  24. Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12:28–34

    Article  CAS  PubMed  Google Scholar 

  25. Rue J, Lewis PB, Detterline AJ, Verma N, Bach BR (2007) Minimally invasive medial collateral ligament reconstruction using achilles tendon allograft. Tech Knee Surg 6:266

    Article  Google Scholar 

  26. Schweitzer ME, Tran D, Deely DM, Hume EL (1995) Medial collateral ligament injuries: evaluation of multiple signs, prevalence and location of associated bone bruises, and assessment with MR imaging. Radiology 194:825–829

    CAS  PubMed  Google Scholar 

  27. Seil R, Rupp S, Krauss PW, Benz A, Kohn DM (1998) Comparison of initial fixation strength between biodegradable and metallic interference screws and a press-fit fixation technique in a porcine model. Am J Sports Med 26:815–819

    CAS  PubMed  Google Scholar 

  28. Sethi PM, Tibone JE (2008) Distal biceps repair using cortical button fixation. Sports Med Arthrosc 16:130–135

    Article  PubMed  Google Scholar 

  29. Sethi P, Obopilwe E, Rincon L, Miller S, Mazzocca A (2010) Biomechanical evaluation of distal biceps reconstruction with cortical button and interference screw fixation. J Shoulder Elbow Surg 19:53–57

    Article  PubMed  Google Scholar 

  30. Slocum DB, Larson RL (1968) Rotatory instability of the knee. Its pathogenesis and a clinical test to demonstrate its presence. J Bone Joint Surg Am 50:211–225

    CAS  PubMed  Google Scholar 

  31. Tecklenburg K, Burkart P, Hoser C, Rieger M, Fink C (2006) Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws. Arthroscopy 22:993–999

    Article  PubMed  Google Scholar 

  32. Walsh MP, Wijdicks CA, Armitage BM, Westerhaus BD, Parker JB, Laprade RF (2009) The 1:1 versus the 2:2 tunnel-drilling technique: optimization of fixation strength and stiffness in an all-inside double-bundle anterior cruciate ligament reconstruction—a biomechanical study. Am J Sports Med 37:1539–1547

    Article  PubMed  Google Scholar 

  33. Walsh MP, Wijdicks CA, Parker JB, Hapa O, LaPrade RF (2009) A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 37:160–167

    Article  PubMed  Google Scholar 

  34. Wijdicks CA, Ewart DT, Nuckley DJ, Johansen S, Engebretsen L, LaPrade RF (2010) Structural properties of the primary medial knee structures. Am J Sports Med doi:10.1177/0363546510363465

  35. Wijdicks CA, Griffith CJ, LaPrade RF, Spiridonov SI, Johansen S, Armitage BM, Engebretsen L (2009) Medial knee injury: part 2, load sharing between the posterior oblique ligament and superficial medial collateral ligament. Am J Sports Med 37:1771–1776

    Article  PubMed  Google Scholar 

  36. Yamanaka M, Yasuda K, Tohyama H, Nakano H, Wada T (1999) The effect of cyclic displacement on the biomechanical characteristics of anterior cruciate ligament reconstructions. Am J Sports Med 27:772–777

    CAS  PubMed  Google Scholar 

  37. Yasuda K, Ichiyama H, Kondo E, Miyatake S, Inoue M, Tanabe Y (2008) An in vivo biomechanical study on the tension-versus-knee flexion angle curves of 2 grafts in anatomic double-bundle anterior cruciate ligament reconstruction: effects of initial tension and internal tibial rotation. Arthroscopy 24:276–284

    Article  PubMed  Google Scholar 

  38. Yasuda K, Kondo E, Ichiyama H, Kitamura N, Tanabe Y, Tohyama H, Minami A (2004) Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 20:1015–1025

    Article  PubMed  Google Scholar 

  39. Yoshiya S, Kuroda R, Mizuno K, Yamamoto T, Kurosaka M (2005) Medial collateral ligament reconstruction using autogenous hamstring tendons: technique and results in initial cases. Am J Sports Med 33:1380–1385

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research study was supported by a grant from the Research Council of Norway grant No. 175047/D15, Health East Norway grant No. 10703604 and by the Sports Medicine Research Fund of the Minnesota Medical Foundation. The authors acknowledge Conrad Lindquist for his work on preparing the testing fixture. We also mention Paul Lender for his statistical expertise and Josh Parker for performing the DEXA scans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. LaPrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijdicks, C.A., Brand, E.J., Nuckley, D.J. et al. Biomechanical evaluation of a medial knee reconstruction with comparison of bioabsorbable interference screw constructs and optimization with a cortical button. Knee Surg Sports Traumatol Arthrosc 18, 1532–1541 (2010). https://doi.org/10.1007/s00167-010-1127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1127-z

Keywords

Navigation