Skip to main content

Advertisement

Log in

Optimal screw diameter for interference fixation in a bone tunnel: a porcine model

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The study investigates the optimal interference screw dimensions required to secure a tendon graft in a bone tunnel. A standard 8 mm pig flexor-tendon graft was inserted into a standard open-ended 8 mm bone tunnel of a porcine distal femur and secured using either 7 mm, 8 mm or 9 mm diameter metal interference screws (Arthrex Inc, Naples, FL). The construct was tested to failure using a Shimadzu ASG 10KN Universal Material Testing Machine (Shimadzu, Tokyo, Japan). Load and mode of construct failure were recorded for 37 individual constructs. There was no significant difference in the load at failure between the 7 mm screw (192 N; range 151–232) and 8 mm screw (181 N; range 150–212) (p>0.05). There was a significant difference between the 7 mm screw and the 9 mm screw (109 N; range 67–151) (p=0.006) and between the 8 mm screw and the 9 mm screw (p=0.015). When using a 9 mm screw, 100% of the constructs failed by cut out of the graft at the tunnel opening. The 7 mm constructs failed by slippage of the tendon from the bone tunnel in 83% of cases, with only 17% failing by cut out at the tunnel opening. The 8 mm constructs demonstrated a mixture of failure modes, with slippage occurring in 58% of cases, cut out in 38% and failure of the graft substance in one case (4%). In this model, screw diameters equal to or 1 mm less than the tunnel/tendon diameter provides better fixation than using a screw 1 mm larger. The mode of failure differs for each of these screws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen AD, Sitler R, Marchetto P, Kelly JD, Mattacola CG (2001) Assessment of the endoscopic semitendinosus/gracilis autograft procedure with interference screw fixation for reconstruction of the anterior cruciate ligament. Orthopedics 24:347–353

    Article  CAS  PubMed  Google Scholar 

  2. Allum RL (2001) The anterior cruciate ligament—current concepts. Editorial. Knee 8:1–3

    Article  CAS  PubMed  Google Scholar 

  3. Brand J, Weiler A, Carbon DNM, Brown CH, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–773

    PubMed  Google Scholar 

  4. Bickerstaff D (2001) BASK Instructional Lecture 4: anterior cruciate ligament graft fixation. Knee 8:79–81

    Article  CAS  PubMed  Google Scholar 

  5. Brown CH, Hecker AT, Hipp JA, Myers ER, Hayes WC (1993) The biomechanics of interference screw fixation of patellar tendon anterior cruciate ligament grafts. Am J Sports Med 21:880–886

    PubMed  Google Scholar 

  6. Brown GA, Pena F, Grontvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human and elderly human cadaver knees: influence of insertion torque, tunnel–bone gap and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244

    CAS  PubMed  Google Scholar 

  7. Caborn DN, Coen M, Neef R, Hamilton D, Nyland J, Johnson DL (1998) Quadrupled semitendinosus–gracilis autograft fixation in the femoral tunnel: a comparison between a metal and a bioabsorbable interference screw. Arthroscopy 14:241–245

    CAS  PubMed  Google Scholar 

  8. Carbon DN, Selby JB (2002) Allograft anterior tibialis tendon with bioabsorbable interference screw fixation in anterior cruciate ligament reconstruction. Arthroscopy 18:102–105

    Article  PubMed  Google Scholar 

  9. Carter TR, Edinger S (1999) Isokinetic evaluation of anterior cruciate ligament reconstruction: hamstring versus patellar tendon. Arthroscopy 15:169–172

    CAS  PubMed  Google Scholar 

  10. Casteleyn PP (1999) Management of anterior cruciate ligament lesions: surgical fashion, personal whim or scientific evidence? Study of medium- and long-term results. Acta Orthop Belg 65:327–339

    CAS  PubMed  Google Scholar 

  11. Clancey WG, Narechania RG, Rosenberg TD Gmeiner JG, Wisnefske DD, Lange TA (1981)Anterior and posterior cruciate ligament reconstructions in rhesus monkeys. A histological microangiographic and biomechanical analysis. J Bone Joint Surg Am 63:1270–1284

    PubMed  Google Scholar 

  12. Cuppone M, Seedhom BB (2001) Effect of implant lengthening and mode of fixation on knee laxity after ACL reconstruction with an artificial ligament: a cadaveric study. J Orthop Sci 6:253–261

    Article  CAS  PubMed  Google Scholar 

  13. Dyson L, Hamner MD, Brown CH, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the ACL: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557

    CAS  PubMed  Google Scholar 

  14. Francis A, Thomas R de WM, McGregor A (2001) Anterior cruciate ligament rupture: reconstruction surgery and rehabilitation. A nation-wide survey of current practice. Knee 8:13–18

    Article  CAS  PubMed  Google Scholar 

  15. Jaureguito JW, Paulos LE (1996) Why grafts fail. Clin Orthop 325:25–41

    Article  PubMed  Google Scholar 

  16. Khon D, Sander-Beuermann A (1994) Donor site morbidity after harvest of a bone–tendon–bone patellar tendon autograft. Arthroscopy 2:219–223

    Google Scholar 

  17. Kousa P, Jarvinen TL, Kannus P, Jarvinen M (2001) Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading. Am J Sports Med 29:420–425

    CAS  PubMed  Google Scholar 

  18. Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29:67–71

    CAS  PubMed  Google Scholar 

  19. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    PubMed  Google Scholar 

  20. Robert Larson, Mario Taillon (1994) Anterior cruciate ligament insufficiency: principles of treatment. J Am Acad Orthop Surg 2:26–35

    PubMed  Google Scholar 

  21. Rowden NJ, Sher D, Rogers GJ, Shindhelm K (1997) Anterior cruciate ligament graft fixation. Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers. Am J Sports Med 25:472–478

    CAS  PubMed  Google Scholar 

  22. Selby JB, Johnson DL, Hester P, Carbon DNM (2001) Effect of screw length on bioabsorbable interference screw fixation in a tibial bone tunnel. Am J Sports Med 29:614–619

    CAS  PubMed  Google Scholar 

  23. Stadelmaier DM, Lowe WR, Ilahi OA, Noble PC, Kohl HW (1999) Cyclic pullout strength of hamstring tendon graft fixation with soft tissue interference screws. Influence of screw length. Am J Sports Med 27:778–783

    CAS  PubMed  Google Scholar 

  24. Vergis A, Gillquist J (1995) Graft failure in intraarticular anterior cruciate ligament reconstructions: a review of the literature. Arthroscopy 11:312–321

    CAS  PubMed  Google Scholar 

  25. Weiler A, Hoffmann RF, Siepe CJ, Kolback SF, Sudkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359

    CAS  PubMed  Google Scholar 

  26. Witvrouw E, Bellemans J, Verdonk R, Cambier D, Coorevits P Almqvist F (2001) Patellar tendon vs doubled semitendinosus and gracilis tendon for anterior cruciate ligament reconstruction. Int Orthop 25:308–311

    Article  CAS  PubMed  Google Scholar 

  27. Yasuda K, Tsujino J, Ohkoshi Y, Tanabe Y, Kaneda K (1995) Graft site morbidity with autogenous semitendinosus and gracilis tendons. Am J Sports Med 23:706–714

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. J. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, M.W.J., Williams, J.L., Thake, A.J. et al. Optimal screw diameter for interference fixation in a bone tunnel: a porcine model. Knee Surg Sports Traumatol Arthrosc 12, 486–489 (2004). https://doi.org/10.1007/s00167-003-0466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-003-0466-4

Keywords

Navigation