Skip to main content
Log in

Aspect-ratio dependence of transient Taylor vortices close to threshold

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We perform a detailed numerical study of transient Taylor vortices arising from the instability of cylindrical Couette flow with the exterior cylinder at rest for radius ratio η = 0.5 and variable aspect ratio Γ. The result of Abshagen et al. (J Fluid Mech 476:335–343, 2003) that onset transients apparently evolve on a much smaller time–scale than decay transients is recovered. It is shown to be an artefact of time scale estimations based on the Stuart–Landau amplitude equation which assumes frozen space dependence while full space–time dependence embedded in the Ginzburg–Landau formalism needs to be taken into account to understand transients already at moderate aspect ratio. Sub-critical pattern induction is shown to explain the apparently anomalous behaviour of the system at onset while decay follows the Stuart–Landau prediction more closely. The dependence of time scales on boundary effects is studied for a wide range of aspect ratios, including non-integer ones, showing general agreement with the Ginzburg–Landau picture able to account for solutions modulated by Ekman pumping at the disks bounding the cylinders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abshagen J., Meincke O., Pfister G., Cliffe K.A., Mullin T.: Transient dynamics at the onset of Taylor vortices. J. Fluid Mech. 476, 335–343 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coles D.: Transition in circular Couette flow. J. Fluid Mech. 21, 385–425 (1965)

    Article  MATH  Google Scholar 

  3. Andereck C.D., Liu S.S., Swinney H.L.: Flow regimes in a circular Couette flow system with independently rotating cylinders. J. Fluid Mech. 164, 155–183 (1986)

    Article  Google Scholar 

  4. Prigent A., Grégoire G., Chaté H., Dauchot O., van Saarloos W.: Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501 (2002)

    Article  Google Scholar 

  5. Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  6. Drazin P.G., Reid W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  7. Koschmieder E.L.: Bénard Cells and Taylor Vortices. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  8. Tagg, R.: The Taylor–Couette problem. Nonlinear Science Today 4, 1–25; a reference list, fairly complete up to 1999, can be found at: http://carbon.cudenver.edu/~rtagg/tcrefs/taylorcouette.html (1994)

  9. Stuart J.T.: Nonlinear stability theory. Ann. Rev. Fluid Mech. 43, 347–371 (1971)

    Article  Google Scholar 

  10. Stuart J.T.: On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 1–21 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kirchgässner K.: Instabilität der Strömung swischen zweil rotierenden Zylindern gegenüber Taylor-Wirbeln für beliebige Spaltbreiten. ZAMP 12, 14–30 (1961)

    Article  MATH  Google Scholar 

  12. Davey A.: The growth of Taylor vortices in flows between rotating cylinders. J. Fluid Mech. 14, 336–368 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donnelly R.J., Schwarz K.W.: Experiments on the stability of viscous flow between rotating cylinders. VI. Finite amplitude experiments. Proc. R. Soc. Lond. A 283, 531–556 (1965)

    Google Scholar 

  14. Dominguez-Lerma M.A., Ahlers G., Cannell D.S.: Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh–Bénard convection. Phys. Fluids 27, 856–860 (1984)

    Article  MATH  Google Scholar 

  15. Schaeffer D.G.: Qualitative analysis of a model for boundary effects in the Taylor problem. Math. Proc. Camb. Phil. Soc. 87, 307–337 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hall P.: Centrifugal instabilities in finite containers: a periodic model. J. Fluid Mech. 99, 575–596 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Benjamin T.B., Mullin T.: Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377, 221–249 (1981)

    Article  MathSciNet  Google Scholar 

  18. Rucklidge A.M., Champneys A.R.: Boundary effects and the onset of Taylor vortices. Phys. D 191, 282–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ahlers G., Cannell D.S.: Vortex front propagation in rotating Couette–Taylor flow. Phys. Rev. Lett. 50, 1583–1586 (1983)

    Article  Google Scholar 

  20. Neitzel G.P.: Numerical computation of time dependent Taylor-vortex flow in finite-length geometries. J. Fluid Mech. 141, 51–66 (1984)

    Article  MATH  Google Scholar 

  21. Niklas M., Lücke M., Müller-Krumbhaar H.: Velocity of a propagating Taylor-vortex front. Phys. Rev. A 40, 493–496 (1989)

    Article  Google Scholar 

  22. Hall P.: Evolution equation for Taylor vortices in the small gap limit. Phys. Rev. A 29, 2921–2923 (1984)

    Article  Google Scholar 

  23. Manneville, P.: Dissipative structures and weak turbulence. Academic Press, Boston; see especially Chapters 4, 5, 8–10 (1990)

  24. Daniels P.G.: The effect of distant sidewalls on the transition to finite amplitude Bénard convection. Proc. R. Soc. Lond. A 358, 173–197 (1977)

    MATH  MathSciNet  Google Scholar 

  25. Hall P., Walton I.C.: The smooth transition to a convective regime in a two-dimensional box. Proc. R. Soc. Lond. A 358, 199–221 (1977)

    MATH  MathSciNet  Google Scholar 

  26. Cross M.C., Daniels P.G., Hohenberg P.C., Siggia E.D.: Phase winding solutions in a finite container above the convective threshold. J. Fluid Mech. 127, 155–183 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Graham R., Domaradzki J.A.: Local amplitude equation of Taylor vortices and its boundary condition. Phys. Rev. A 26, 1572–1579 (1982)

    Article  Google Scholar 

  28. Pfister G., Rehberg I.: Space-dependent order parameter in circular Couette flow transitions. Phys. Lett. A 83, 19–22 (1981)

    Article  Google Scholar 

  29. Zaleski S.: Cellular patterns with boundary forcing. J. Fluid Mech. 149, 101–125 (1984)

    Article  MATH  Google Scholar 

  30. Pomeau Y., Manneville P.: Stability and fluctuations of a spatially periodic convective flow. J. Phys. Lett. 40, L609–L612 (1979)

    Article  MathSciNet  Google Scholar 

  31. Randriamampianina E., Elena L., Fontaine J.P., Schiestel R.: Numerical prediction of laminar, transitional and turbulent flows in shrouded rotor-stator systems. Phys. Fluids 9, 1696–1713 (1997)

    Article  Google Scholar 

  32. Tavener S.J., Mullin T., Cliffe K.A.: Novel bifurcation phenomena in a rotating annulus. J. Fluid Mech. 229, 483–497 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Czarny O., Serre E., Bontoux P., Lueptow R.M.: Interaction between Ekman pumping and the centrifugal instability in Taylor–Couette flow. Phys. Fluids 15, 467–477 (2003)

    Article  MathSciNet  Google Scholar 

  34. Peyret R.: Spectral methods for incompressible viscous flows. Series: Applied Mathematical Sciences, vol. 148. Springer, New York (2002)

    Google Scholar 

  35. Raspo I., Hugues S., Serre E., Randriamampianina A., Bontoux P.: A spectral projection method for the simulation of complex three-dimensional rotating flows. Comp. Fluids 31, 745–767 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jackson L.B.: Digital Filters and Signal Processing—with MatLab Exercises. Kluwer, Dordrecht (1996)

    Google Scholar 

  37. Manneville P., Piquemal J.M.: Zigzag instability and axisymmetric rolls in Rayleigh–Bénard convection, the effects of curvature. Phys. Rev. A 28, 1774–1790 (1983)

    Article  MathSciNet  Google Scholar 

  38. Walgraef D.: End effects and phase instabilities in a model for Taylor–Couette systems. Phys. Rev. A 34, 3270–3278 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Manneville.

Additional information

Communicated by P. Hall

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manneville, P., Czarny, O. Aspect-ratio dependence of transient Taylor vortices close to threshold. Theor. Comput. Fluid Dyn. 23, 15–36 (2009). https://doi.org/10.1007/s00162-009-0093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0093-x

Keywords

PACS

Navigation