Skip to main content
Log in

Computational studies of inertia-gravity waves radiated from upper tropospheric jets

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The generation and physical characteristics of inertia-gravity waves radiated from an unstable forced jet at the tropopause are investigated through high-resolution numerical simulations of the three-dimensional Navier–Stokes anelastic equations. Such waves are induced by Kelvin–Helmholtz instabilities on the flanks of the inhomogeneously stratified jet. From the evolution of the averaged momentum flux above the jet, it is found that gravity waves are continuously radiated after the shear-stratified flow reaches a quasi-equilibrium state. The time–vertical coordinate cross-sections of potential temperature show phase patterns indicating upward energy propagation. The sign of the momentum flux above and below the jet further confirms this, indicating that the group velocity of the generated waves is pointing away from the jet core region. Space–time spectral analysis at the upper flank level of the jet shows a broad spectral band, with different phase speeds. The spectra obtained in the stratosphere above the jet show a shift toward lower frequencies and larger spatial scales compared to the spectra found in the jet region. The three-dimensional character of the generated waves is confirmed by analysis of the co-spectra of the spanwise and vertical velocities. Imposing the background rotation modifies the polarization relation between the horizontal wind components. This out-of-phase relation is evidenced by the hodograph of the horizontal wind vector, further confirming the upward energy propagation. The background rotation also causes the co-spectra of the waves high above the jet core to be asymmetric in the spanwise modes, with contributions from modes with negative wavenumbers dominating the co-spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Fast singular oscillating limits of stably-stratified 3D Euler and Navier-Stokes equations and ageostrophic wave fronts. Large-Scale Atmosphere-Ocean Dynamics I, pp. 126–201. Cambridge University Press, Cambridge (2002)

  2. Babin A., Mahalov A. and Nicolaenko B. (1998). On nonlinear baroclinic waves and adjustment of pancake dynamics. Theor. Comp. Fluid Dyn. 11(3/4): 215–235

    Article  MATH  Google Scholar 

  3. Buhler O. and McIntyre M.E. (1999). On shear-generated gravity waves that reach the mesosphere, part II, Wave propagation. J. Atmos. Sci. 56: 3764–3773

    Article  ADS  MathSciNet  Google Scholar 

  4. Buhler O., McIntyre M.E. and Scinocca J.F. (1999). On shear-generated gravity waves that reach the mesosphere, part I. Wave generation. J. Atmos. Sci. 56: 3744–3763

    ADS  MathSciNet  Google Scholar 

  5. Caulfield C.P. and Peltier W.R. (2000). The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech. 413: 1–47

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Chimonas G. and Grant J.R. (1984). Shear excitation of gravity waves. Part II: Upscale scattering from Kelvin–Helmholtz waves. J. Atmos. Sci. 41: 2278–2288

    Article  ADS  Google Scholar 

  7. Cortesi A.B., Smith B.L., Yadigaroglu G. and Banerjee S. (1999). Numerical investigation of the entrainment and mixing processes in neutral and stably-stratified mixing layers. Phys. Fluids 11: 162–185

    Article  ADS  MATH  Google Scholar 

  8. Cot C. and Barat J. (1986). Wave–turbulence interaction in the stratosphere: a case study. J. Geophys. Res. 91: 2749–2756

    Article  ADS  Google Scholar 

  9. Drazin P.G. and Howard L.N. (1966). Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech. 9: 1–89

    Article  Google Scholar 

  10. Fritts D.C. (1984). Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear layer. J. Atmos. Sci. 41: 524–537

    Article  ADS  Google Scholar 

  11. Fritts D.C. and Alexander M.J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41: 1003 doi:10.1029/2001RG000106

    Article  ADS  Google Scholar 

  12. Gavrilov N.M. and Fukao S. (2004). Numerical and the MU radar estimations of gravity wave enhancement and turbulent ozone fluxes near the tropopause. Ann. Geophys. 22: 3889–3898

    Article  ADS  Google Scholar 

  13. Joseph, B., Mahalov, A., Nicolaenko, B., Tse, K.L.: High resolution DNS of jet stream generated tropopausal turbulence. Geophys. Res. Lett. 30(10). doi:10.1029/2003GL017252 (2003)

  14. Joseph B., Mahalov A., Nicolaenko B. and Tse K.L. (2004). Variability of turbulence and its outer scales in a nonuniformly stratified tropopause jet. J. Atmos. Sci. 41: 524–537

    MathSciNet  Google Scholar 

  15. Lane T.P., Sharman R.D., Clark T.L. and Hsu H.M. (2003). An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci. 60: 1297–1321

    Article  ADS  Google Scholar 

  16. Lane T.P., Doyle J.D., Plougonven R., Shapiro M.A. and Sharman R.D. (2004). Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci. 61: 2692–2706

    Article  ADS  Google Scholar 

  17. Lott F., Kelder H. and Teitelbaum H. (1992). A transition from Kelvin–Helmholtz instabilities to propagating wave instabilities. Phys. Fluids A 4: 1990–1997

    Article  MATH  ADS  Google Scholar 

  18. Mahalov A., Nicolaenko B., Tse K.-L. and Joseph B. (2004). Eddy-mixing in jet-stream turbulence under stronger stratification. Geophys. Research Lett. 31: L23111 doi:10 1029/2004 GL021055

    Article  ADS  Google Scholar 

  19. Miles, J.W.: On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508

  20. Moustaoui M., Joseph B. and Teitelbaum H. (2004). Mixing layer formation near the tropopause due to gravity wave-critical level interactions in a cloud-resolving model. J. Atmos. Sci. 61: 3112–3124

    Article  ADS  Google Scholar 

  21. Nicholls M.E., Pielke R.A. and Cotton W.R. (1991). Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci. 48: 1869–1884

    Article  ADS  Google Scholar 

  22. O’Sullivan D. and Dunkerton T. (1995). Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci. 52: 3695–3716

    Article  ADS  Google Scholar 

  23. Pandya R.E., Durran D.R. and Bretherton C. (1993). Comments on thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci. 50: 4097–4101

    Article  ADS  Google Scholar 

  24. Plougonven R., Teitelbaum H. and Zeitlin V. (2003). Inertia-gravity wave generation by the tropospheric mid-latitude jet as given by the FASTEX radiosoundings. J. Geophys. Res. 108: 4686

    Article  Google Scholar 

  25. Scinocca J.F. and Ford R. (2000). The nonlinear forcing of large-scale internal gravity waves by stratified shear instability. J. Atmos. Sci. 57: 653–672

    Article  ADS  MathSciNet  Google Scholar 

  26. Smyth W.D. and Moum J.N. (2002). Shear instability and gravity wave saturation in an asymmetrically stratified jet. Dyn. Atmos. Oceans 35: 265–294

    Article  ADS  Google Scholar 

  27. Tse K.L., Mahalov A., Nicolaenko B. and Fernando H.J.S. (2003). Quasi-equilibrium dynamics of shear-stratified turbulence in a model tropospheric jet. J. Fluid. Mech. 496: 73–103

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Vernin, J., Trinquet, H., Jumper, G., Murphy, E., Ratkwoski, A.: OHP02 gravity wave campaign in relation with optical turbulence, Presentation at the Lighthill Institute meeting on atmospheric physics, London, September (2004)

  29. Zhang F. (2004). Generation of mesoscale gravity waves in the upper-tropospheric jet-front systems. J. Atmos. Sci. 61: 440–457

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahalov.

Additional information

Communicated by H.J.S. Fernando

Dedicated to the memory of our colleague Dr. Binson Joseph

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahalov, A., Moustaoui, M., Nicolaenko, B. et al. Computational studies of inertia-gravity waves radiated from upper tropospheric jets. Theor. Comput. Fluid Dyn. 21, 399–422 (2007). https://doi.org/10.1007/s00162-007-0062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-007-0062-1

Keywords

PACS

Navigation