Skip to main content
Log in

Numerical insights on the structural assessment of historical masonry stellar vaults: the case of Santa Maria del Monte in Cagliari

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to present an in-depth numerical investigation on the statics of historical masonry stellar vaults, a special class of masonry ribbed vaults whose three-dimensional geometry features a star-shaped projection on the horizontal plane. In particular, the mechanical behavior of the masonry stellar vault belonging to the church of Santa Maria del Monte in Cagliari (Italy) is analyzed and illustrated as an especially meaningful case study. This church, which was built during the second half of the sixteenth century, is a beautiful example of Gothic-Catalan style, and its ribbed stellar vault is one of the most representative of this type in the town of Cagliari. The geometric outline of the vault has been obtained through laser scanning techniques and a procedure of reverse engineering. Starting from a three-dimensional representation of its geometry, the ultimate load-bearing capacity of the stellar vault can be accurately estimated through a recently developed, NURBS-based upper-bound limit analysis scheme. A comparison with incremental nonlinear analyses carried out with the commercial finite element code DIANA is presented. Furthermore, the paper also includes a sensitivity study aimed at investigating the role of ribs on the ultimate load-bearing capacity of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, P.: Viollet-le-Duc et le rationalisme médiéval. Vincent et Fréal, Paris (1934)

    Google Scholar 

  2. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    ADS  MATH  Google Scholar 

  3. Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bechmann, R.: Les racines des cathédrales: l’architecture Gothique, expression des conditions du milieu. Payot, Paris (1981)

    Google Scholar 

  5. Block, P., Lachauer, L.: Three-dimensional (3D) equilibrium analysis of gothic masonry vaults. Int. J. Archit. Herit. 8, 312–335 (2014)

    Google Scholar 

  6. Block, P., Ochsendorf, J.: Thrust network analysis: a new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell Spat. Struct. 48, 1–7 (2007)

    Google Scholar 

  7. Breymann, G.A.: Allgemeine Bau-Constructions-Lehre mit besonderer Beziehung auf das Hochbauwesen – I Theil – Constructionen in Stein. Hoffmann, Stuttgart (1849)

    Google Scholar 

  8. Cabboi, A., Gentile, C., Saisi, A.: From continuous vibration monitoring to FEM-based damage assessment: application on a stone-masonry tower. Constr. Build. Mater. 156, 252–265 (2017)

    Google Scholar 

  9. Carini, A., Genna, F.: Stability and strength of old masonry vaults under compressive longitudinal loads: engineering analyses of a case study. Eng. Struct. 40, 218–229 (2012)

    Google Scholar 

  10. Casu, P.: Late gothic vaults in Sardinia: design, measure, material. Ph.D. thesis, University of Cagliari, Italy (in Italian) (2013)

  11. Chiozzi, A., Malagù, M., Tralli, A., Cazzani, A.: ArchNURBS: NURBS-based tool for the structural safety assessment of masonry arches in MATLAB. ASCE J. Comput. Civ. Eng. 30, #04015010–1–#04015010–11 (2016)

  12. Chiozzi, A., Milani, G., Grillanda, N., Tralli, A.: An adaptive procedure for the limit analysis of FRP reinforced masonry vaults and applications. Am. J. Eng. Appl. Sci. 9, 735–745 (2016)

    Google Scholar 

  13. Chiozzi, A., Milani, G., Grillanda, N., Tralli, A.: Fast and reliable limit analysis approach for the structural assessment of FRP-reinforced masonry arches. Key Eng. Mater. 747, 196–203 (2017)

    Google Scholar 

  14. Chiozzi, A., Milani, G., Tralli, A.: A genetic algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults. Comput. Struct. 182, 187–204 (2017)

    Google Scholar 

  15. Chiozzi, A., Grillanda, N., Milani, G., Tralli, A.: UB-ALMANAC: an adaptive limit analysis NURBS-based program for the automatic assessment of partial failure mechanisms in masonry churches. Eng. Fail. Anal. 85, 201–220 (2018)

    Google Scholar 

  16. Chiozzi, A., Milani, G., Grillanda, N., Tralli, A.: A fast and general upper-bound limit analysis approach for out-of-plane loaded masonry walls. Meccanica 53, 1875–1898 (2018)

    MathSciNet  Google Scholar 

  17. Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Contin. Mech. Thermodyn. (2018) https://doi.org/10.1007/s00161-018-0672-4

  18. Circolare n. 617 Instructions for the application of the new technical rules for constructions. Gazzetta Ufficiale n. 47, February 26, 2009 - Suppl. Ordinario n.27, (in Italian) (2009)

  19. Como, M.: Statics of Historic Masonry Constructions. Springer, Berlin (2013)

    Google Scholar 

  20. Compán, V., Pachón, P., Cámara, M., Lourenço, P.B., Sáez, A.: Structural safety assessment of geometrically complex masonry vaults by non-linear analysis. The Chapel of the Würzburg Residence (Germany). Eng. Struct. 140, 1–13 (2017)

    Google Scholar 

  21. Corsini, M., Cignoni, P., Scopigno, R.: Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18, 914–924 (2012)

    Google Scholar 

  22. Cuccuru, F., Fais, S., Ligas, P.: Dynamic elastic characterization of carbonate rocks used as building materials in the historical city centre of Cagliari (Italy). Q. J. Eng. Geol. Hydrogeol. 47, 259–266 (2014)

    Google Scholar 

  23. Cuomo, M., Greco, L.: An implicit strong \(\text{G}^{1}\)-conforming formulation for the analysis of the Kirchhoff plate model. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0701-3

  24. Di Pasquale, S.: The art of construction: between knowledge and science. Marsilio, Venezia (in Italian) (1996)

  25. DIANA Finite Element Analysis User’s Manual—Release 10.2. DIANA FEA BV., Delft (2015). https://dianafea.com/DIANA-manuals

  26. Eissa, E.A., Kazi, A.: Relation between static and dynamic Young’s moduli of rocks. Int J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 479–482 (1988)

    Google Scholar 

  27. Eremeyev, V.A., Altenbach, H.: Basics of mechanics of micropolar shells. In: Altenbach, H., Eremeyev, V. (eds.) Shell-like Structures: Advanced Theories and Applications, pp. 63–111. Springer, Cham (2017)

    Google Scholar 

  28. Eremeyev, V.A., Lebedev, L.P., Cloud, M.J.: The Rayleigh and Courant variational principles in the six-parameter shell theory. Math. Mech. Solids 20, 806–822 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Fitchen, J.: The Construction of Gothic Cathedrals: A Study of Medieval Vault Erection. University of Chicago Press, Chicago (1961)

    Google Scholar 

  30. Freddi, M., Salinas, R.: The church of S. Maria del Monte in Cagliari. Bollettino Tecnico del Circolo Culturale degli Ingegneri e Architetti Sardi 12, 1–8 (1959). (in Italian)

    Google Scholar 

  31. Gaetani, A., Lourenço, P.B., Monti, G., Milani, G.: A parametric investigation on the seismic capacity of masonry cross vaults. Eng. Struct. 148, 686–703 (2017)

    Google Scholar 

  32. Garmendia, L., Marcos, I., Garbin, E., Valluzzi, M.R.: Strengthening of masonry arches with textile-reinforced mortar: experimental behaviour and analytical approaches. Mater. Struct. 47, 2067–2080 (2014)

    Google Scholar 

  33. Grillanda, N., Manconi, F., Stochino, F., Cazzani, A., Bondi, F., Chiozzi, A., Tralli, A.: On the analysis of the stellar vault of Santa Maria del Monte in Cagliari. In: Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2017 (ICCMSE-2017), Thessaloniki, pp. 200008–1–200008–4 (2017). https://doi.org/10.1063/1.5012484

  34. Heyman, J.: The Stone Skeleton: Structural Engineering of Masonry Architecture. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  35. Huerta Fernández, S.: Geometry and equilibrium: the gothic theory of structural design. Struct. Eng. 84(2), 23–28 (2006)

    MathSciNet  Google Scholar 

  36. Huerta Fernández, S.: The debate about the structural behaviour of gothic vaults: from Viollet-le-Duc to Heyman. Proc. Third Int. Congr. Constr. History Cottbus 2, 837–844 (2009)

    Google Scholar 

  37. Iannuzzo, A., Angelillo, M., De Chiara, E., De Guglielmo, F., De Serio, F., Ribera, F., Gesualdo, A.: Modelling the cracks produced by settlements in masonry structures. Meccanica 53, 1857–1873 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Kennicott, P.R.: Initial graphics exchange specification, IGES 5.3. U.S. Product Data Association, N. Charleston, SC (1996). https://books.google.com/books?id=FHPhGwAACAAJ&pgis=1. Accessed 13 June 2018

  39. Khakalo, S., Niiranen, J.: Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. CAD Comput. Aid. Des. 82, 154–169 (2017)

    MathSciNet  Google Scholar 

  40. Kulig, A., Romaniak, K.: Geometrical models of stellar vaults. J. Pol. Soc. Geom. Eng. Graph. 17, 51–56 (2007)

    MATH  Google Scholar 

  41. Lassus, J.B.A.: Album de Villard de Honnecourt, Architecte du XIIIe siècle. Imprimerie Impériale, Paris (1858)

    Google Scholar 

  42. Lengyel, G.: Discrete element analysis of gothic masonry vaults for self-weight and horizontal support displacement. Eng. Struct. 148, 195–209 (2017)

    Google Scholar 

  43. Manconi, F.: A static analysis of ribbed groin vaults. The stellar vault of Santa Maria del Monte church in Cagliari. Master’s thesis, University of Cagliari, Italy (in Italian) (2015)

  44. McNeel, R.: Rhinoceros: NURBS modeling for Windows. Robert McNeel & Associates, Seattle (2008). https://books.google.com/books?id=9PjVZwEACAAJ&pgis=1. Accessed 13 June 2018

  45. Milani, G., Taliercio, A.: Limit analysis of transversally loaded masonry walls using an innovative macroscopic strength criterion. Int. J. Solids Struct. 81, 274–293 (2016)

    Google Scholar 

  46. Milani, G., Lourenço, P.B., Tralli, A.: Homogenised limit analysis of masonry walls, part I: failure surfaces. Comput. Struct. 84, 166–180 (2006)

    Google Scholar 

  47. Milani, G., Simoni, M., Tralli, A.: Advanced numerical models for the analysis of masonry cross vaults: a case-study in Italy. Eng. Struct. 76, 339–358 (2014)

    Google Scholar 

  48. Miśkiewicz, M.: Structural response of existing spatial truss roof construction based on Cosserat rod theory. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0660-8

  49. NTC 2008 Technical rules for constructions (Italian Building Code). Gazzetta Ufficiale n. 29. February 4, 2008—Suppl. Ordinario n. 30 (in Italian) (2008)

  50. Parisi, F., Augenti, N.: A shear response surface for the characterization of unit mortar interfaces. In: 15th IB2MaC, International Brick and Block Masonry Conference, Florianópolis, Brazil (2012)

  51. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1995)

    MATH  Google Scholar 

  52. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2D fabric sheet with inextensible fibres. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 67, #114–1–#114–24 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Compl. Syst. 6, 77–100 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Ramaglia, G., Lignola, G.P., Prota, A.: Collapse analysis of slender masonry barrel vaults. Eng. Struct. 117, 86–100 (2016)

    Google Scholar 

  55. Sabouret, V.: Les voûtes d’arêtes nervurées. Rôle simplement décoratif des nervures. Le Génie Civ. 92, 205–209 (1928)

    Google Scholar 

  56. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    MathSciNet  MATH  Google Scholar 

  57. Ther, T., Sajtos, I., Armuth, M., Strommer, L.: Ribbed vaults of the Nagyvázsony monastery church—geometrical factor of safety highlights the secret. Period. Polytech. Archit. 41, 3–8 (2010)

    Google Scholar 

  58. Turco, E.: Discrete is it enough? The revival of Piola–Hencky keynotes to analyze three-dimensional Elastica. Contin. Mechanics and Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0656-4

  59. Ungewitter, G., Mohrmann, K.: Lehrbuch der gotischen Konstruktionen, 4th edn. Tauchnitz, Leipzig (1890)

    Google Scholar 

  60. Valluzzi, M.R.: On the vulnerability of historical masonry structures: analysis and mitigation. Mater. Struct. 40, 723–743 (2007)

    Google Scholar 

  61. Viollet-le-Duc, E.E.: Dictionnaire raisonné de l’architecture française du XIe au XVIe siècle, vols. 1–9. Bance—Morel, Paris (1854–1868)

  62. Willis, R.: On the construction of the vaults of the Middle Ages. Trans. R. Inst. Br. Archit. 1, 1–69 (1842)

    Google Scholar 

  63. Yildizdag, M.E., Demirtas, M., Ergin, A.: Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0696-9

Download references

Acknowledgements

The financial support of Fondazione di Sardegna and R.A.S. (the Autonomous Region of Sardinia) under the research grant for project Healthy Cities and Smart Territories (2016–2017) is gratefully acknowledged by Antonio Cazzani. The financial support of the Autonomous Region of Sardinia under Grant PO-FSE 2014–2020, CCI: 2014IT05SFOP021, Project: Retrofitting, rehabilitation and requalification of the historical cultural architectural heritage (R3-PAS) is acknowledged by Flavio Stochino. Laser scanning of the stellar vault of Santa Maria del Monte Church has been performed with the equipment of LabMAST (the Mediterranean Lab for Materials and Historical and Traditional Architectures belonging to the University of Cagliari) by Monica Deidda and Andrea Dessì. Their professional help is recognized with gratitude by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cazzani.

Additional information

Communicated by Victor Eremeyev, Holm Altenbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grillanda, N., Chiozzi, A., Bondi, F. et al. Numerical insights on the structural assessment of historical masonry stellar vaults: the case of Santa Maria del Monte in Cagliari. Continuum Mech. Thermodyn. 33, 1–24 (2021). https://doi.org/10.1007/s00161-019-00752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00752-8

Keywords

Navigation