Skip to main content
Log in

Microstructural modelling of polycrystalline materials and multilayer actuator layers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A two-dimensional grain boundary formulation is presented for the micromechanical analysis of multilayer barium titanate ceramics. A boundary element formulation of the elastic problem is generated for single grains of the polycrystalline, as well as for heterogeneous aggregation and the assumption of traction equilibrium and displacement compatibility. In order to obtain the microstructural model of homogeneous and multilayer actuator, the solid-state technique is applied for the preparation of \(\hbox {BaTiO}_{3}\) powder. Image-processing technique is employed in order to discretize the grains boundaries but not their surface, resulting in the significant simplification of data preparation. The integrity of the collection is guaranteed by applying both continuity and equilibrium at the interface between contiguous grains. The numerical homogenization of the 2D polycrystals is performed by the developed technique, and a comparison with the available data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biglar, M., Mirdamadi, H.R., Danesh, M.: Optimal locations and orientations of piezoelectric transducers on cylindrical shell based on gramians of contributed and undesired Rayleigh–Ritz modes using genetic algorithm. J. Sound Vib. 333, 1224–1244 (2014)

    Article  ADS  Google Scholar 

  2. Biglar, M., Mirdamadi, H.R.: Integrated and consistent active control formulation and piezotransducer position optimization of plate structures considering spillover effects. Shock Vib. 2014, Article ID: 276714 (2014)

  3. Biglar, M., Mirdamadi, H.R.: Configuration optimization of piezoelectric patches attached to functionally graded shear-deformable cylindrical shells considering spillover effects. J. Intell. Mater. Syst. Struct. 27, 295–313 (2016)

    Article  Google Scholar 

  4. Biglar, M., Gromada, M., Stachowicz, F., Trzepieciński, T.: Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm. Acta Mech. 226, 3451–3462 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vijatović, M.M., Bobić, J.D., Stojanović, B.D.: History and challenges of barium titanate: part II. Sci. Sinter. 40, 235–244 (2008)

    Article  Google Scholar 

  6. Kao, C.F., Yang, W.D.: Preparation of barium strontium titanate powder from citrate precursor. Appl. Organomet. Chem. 13, 383–397 (1999)

    Article  Google Scholar 

  7. Shindo, Y.Y., Yoshida, M., Narita, F., Horiguchi, K.: Electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators: experiment and finite element simulation. J. Mech. Phys. Solids 52, 1109–1124 (2004)

    Article  ADS  MATH  Google Scholar 

  8. Wang, B.L., Han, J.C.: An analytical model for electrode-ceramic interaction in multilayer piezoelectric actuators. Acta Mech. Sin. 23, 199–208 (2007)

    Article  ADS  MATH  Google Scholar 

  9. Maurini, C., Pouget, J., dell’Isola, Francesco: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22), 1438–1458 (2006)

    Article  Google Scholar 

  10. Maurini, C., Pouget, J., dell’Isola, Francesco: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41(16), 4473–4502 (2004)

    Article  MATH  Google Scholar 

  11. Maurini, C., dell’Isola, F., Pouget, J.: On models of layered piezoelectric beams for passive vibration control. Proc. J. Phys. IV. 115, 307 (2004). (EDP sciences)

    MATH  Google Scholar 

  12. Rosi, G., Pouget, J., dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A Solids 29(5), 859–870 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. Alessandroni, S., Andreaus, U., Dell’Isola, F., Porfiri, M.: Piezo-electromechanical (pem) Kirchhoff–Love plates. Eur. J. Mech. A Solids 23(4), 689–702 (2004)

    Article  MATH  Google Scholar 

  14. Giorgio, I., Galantucci, L., Della Corte, A., Del Vescovo, D.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051–1084 (2015)

    Article  Google Scholar 

  15. dell’Isola, F., Rosa, L.: Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams. Contin. Mech. Thermodyn. 9(2), 115–125 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fenner, R.: Boundary Element Methods for Engineers: Part II Plane Elastic Problems, 1st edn. Bookboon, London (2014)

    Google Scholar 

  17. Yang, Q.S., Qin, Q.H.: Micro-mechanical analysis of composite materials by BEM. Eng. Anal. Bound. Elem. 28, 919–926 (2004)

    Article  MATH  Google Scholar 

  18. Trindade, M.A., Benjeddou, A.: Finite element characterisation of multilayer d31 piezoelectric macro-fibre composites. Compos. Struct. 151, 47–57 (2016)

    Article  Google Scholar 

  19. Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civil Eng. 21(5), 509–554 (2017)

    Article  MathSciNet  Google Scholar 

  21. Franciosi, P., Spagnuolo, M., Salman, O. U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn., pp.1–32 (2018)

  22. Rahali, Y., Assadi, M., Goda, I., Zghal, A., Ganghoffer, J.F.: Computation of the effective mechanical properties including nonclassical moduli of 2.5 D and 3D interlocks by micromechanical approaches. Compos. Part B: Eng. 98, 194–212 (2016)

  23. Tvergaard, V.: Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng. A 125, 203–213 (1990)

    Article  Google Scholar 

  24. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)

    Article  MATH  Google Scholar 

  25. Zavattieri, P.D., Raghuram, P.V., Espinosa, H.D.: A computational model of ceramic microstructures subjected to multi-axial dynamic loading. J. Mech. Phys. Solids 49, 27–68 (2001)

    Article  ADS  MATH  Google Scholar 

  26. Cuomo, M.: Forms of the dissipation function for a class of viscoplastic models. Math. Mech. Complex Syst. 5(3), 217–237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civil Eng. 21(7–8), 821–839 (2017)

    Article  Google Scholar 

  28. Spagnuolo, M., Barcz, K., Pfaff, A., Dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  29. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28(1–2), 119–137 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gromada, M., Biglar, M., Trzepieciński, T., Stachowicz, F.: Characterisation of BaTiO\(_{3}\) piezoelectric perovskite material for multilayer actuators. Bull. Mater. Sci. 40, 759–771 (2017)

    Article  Google Scholar 

  33. Duran, P., Gutierrez, D., Tartaj, J., Moure, C.: Densification behaviour, microstructure development and dielectric properties of pure \(\text{ BaTiO }_{3}\) prepared by thermal decomposition of (Ba, Ti)-citrate polyester resins. Ceram. Int. 28, 283–292 (2002)

    Article  Google Scholar 

  34. Yoon, D.H., Lee, B.I.: Processing of barium titanate tapes with different binders for MLCC applications—part I: optimization using design of experiments. J. Eur. Ceram. Soc. 24, 739–752 (2004)

    Article  Google Scholar 

  35. Verhoosel, C.V., Gutiérrez, M.A.: Modelling inter-and transgranular fracture in piezoelectric polycrystals. Eng. Fract. Mech. 76, 742–760 (2009)

    Article  Google Scholar 

  36. Sfantos, G.K., Aliabadi, M.H.: A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials. Int. J. Num. Meth. Eng. 69, 1590–1626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Trzepieciński.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biglar, M., Trzepieciński, T. & Gromada, M. Microstructural modelling of polycrystalline materials and multilayer actuator layers. Continuum Mech. Thermodyn. 31, 895–906 (2019). https://doi.org/10.1007/s00161-018-0688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0688-9

Keywords

Navigation