Skip to main content
Log in

Euromech 579 Arpino 3–8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly)inextensible fibers—a review of presentations and discussions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the present paper, a rational report on Euromech 579, Generalized and Microstructured Continua: New ideas in modeling and/or Applications to Structures with (nearly)inextensible fibers (Arpino 3–8 April 2017), is provided. The main aim of the colloquium was to provide a forum for experts in generalized and microstructured continua with inextensible fibers to exchange ideas and get informed about the latest research trends in the domain. The interested reader will find more details about the colloquium at the dedicated web page http://www.memocsevents.eu/euromech579/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Marrec, L., Zhang, D., Ostoja-Starzewski, M.: Three-dimensional vibrations of a helically wound cable modeled as a timoshenko rod. Acta Mech. 229, 1–19 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Contento, A., Luongo, A.: Static and dynamic consistent perturbation analysis for nonlinear inextensible planar frames. Comput. Struct. 123, 79–92 (2013)

    Article  Google Scholar 

  3. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  4. Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials, vol. 21. Springer, Berlin (2012)

    MATH  Google Scholar 

  5. Gusev, A.A., Lurie, S.A.: Symmetry conditions in strain gradient elasticity. Math. Mech. Solids 22(4), 683–691 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lurie, S.A., Volkov-Bogorodsky, D., Leontiev, A., Aifantis, E.: Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int. J. Eng. Sci. 49(12), 1517–1525 (2011)

    Article  MathSciNet  Google Scholar 

  7. Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79(5), 1027–1059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids 20(9), 1107–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grillo, A., Carfagna, M., Federico, S.: An allen-cahn approach to the remodelling of fibre-reinforced anisotropic materials. J. Eng. Math. 109, 1–34 (2017)

    MathSciNet  Google Scholar 

  10. Alibert, J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 95 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets. Int. J. Nonlinear Mech. 80, 200–208 (2016)

    Article  ADS  Google Scholar 

  13. Scerrato, D., Giorgio, I., Rizzi, N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik 67(3), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  15. Alibert, J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik 66(5), 2855–2870 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4), 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society of London A, vol. 472, pp. 20150790. The Royal Society (2016)

  18. Andreaus, U., Placidi, L., Rega, G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2603–2616 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Battista, A., Rosa, L., dell’Erba, R., Greco, L.: Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Mathematics and Mechanics of Solids, page 1081286516657889, (2016)

  20. Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanomech. Sci. Technol. Int. J. 6(2), 161–178 (2015)

    Article  Google Scholar 

  21. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  22. Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)

    Article  Google Scholar 

  23. dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66, 3473–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  25. Giorgio, I., Della Corte, A., dell’Isola, F., Steigmann, D.J.: Buckling modes in pantographic lattices. C. R. Mec. 344(7), 487–501 (2016)

    Article  ADS  Google Scholar 

  26. Niiranen, J., Khakalo, S., Balobanov, V., Niemi, A.H.: Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput. Methods Appl. Mech. Eng. 308, 182–211 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Khakalo, S., Balobanov, V., Niiranen, J.: Isogeometric static analysis of gradient-elastic plane strain/stress problems. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol. 42. Springer, Cham (2016)

  28. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Altenbach, H., Eremeyev, V.A.: On the variational analysis of vibrations of prestressed six-parameter shells. In: Muñoz-Rojas, P. (ed.) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol. 49. Springer, Cham (2016)

  30. Eremeyev, V., Altenbach, H.: Basics of mechanics of micropolar shells. In: Altenbach, H., Eremeyev, V. (eds.) Shell-like Structures. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 572. Springer, Cham (2017)

  31. Alibert, JJ., Della Corte, A., Seppecher, P.: Convergence of hencky-type discrete beam model to euler inextensible elastica in large deformation: rigorous proof. In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69. Springer, Singapore (2017)

  32. Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 cisterna di latina 17–21 March 2014 generalized continua and their applications to the design of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solids 22(2), 144–157 (2017)

    Article  MATH  Google Scholar 

  33. Della Corte, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Equilibria of a clamped euler beam (elastica) with distributed load: large deformations. Math. Models Methods Appl. Sci. 27(08), 1391–1421 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)

    Article  MathSciNet  Google Scholar 

  38. Barchiesi, E., dell’Isola, F., Laudato, M., Placidi, L., Seppecher, P.: A 1D continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results. In: dell’Isola, F., Eremeyev, V., Porubov, A. (eds.) Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials, vol. 87. Springer, Cham (2018)

  39. Romeo, M.: A microstructure continuum approach to electromagneto-elastic conductors. Contin. Mech. Thermodyn. 28(6), 1807–1820 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Romeo, M.: Electromagnetic field-current coupling in rigid polarized conductors. Math. Mech. Solids 23(1), 85–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jung, A., Diebels, S.: Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams. Mater. Des. 131, 252–264 (2017)

    Article  Google Scholar 

  42. Heinze, S., Jung, A., Diebels, S., Düster, A.: Experimental and numerical investigation of metal foams undergoing large deformations. PAMM 16(1), 345–346 (2016)

    Article  Google Scholar 

  43. Karyakin, M.I., Shubchinskaia, N.Y.: The equilibrium and stability of the nonlinearly elastic cylinder with internal stresses. Mater. Phys. Mech. 28(1–2), 31–35 (2016)

    Google Scholar 

  44. Glüge, R., Bucci, S.: Does convexity of yield surfaces in plasticity have a physical significance? Math. Mech. Solids (2017). https://doi.org/10.1177/1081286517721599

  45. Desmorat, B., Desmorat, R.: Tensorial polar decomposition of 2D fourth-order tensors. C. R. Méc. 343(9), 471–475 (2015)

    Article  Google Scholar 

  46. Desmorat, B., Vannucci, P.: An alternative to the kelvin decomposition for plane anisotropic elasticity. Math. Methods Appl. Sci. 38(1), 164–175 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Sawangrat, C., Kato, S., Orlov, D., Ameyama, K.: Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J. Mater. Sci. 49(19), 6579–6585 (2014)

    Article  ADS  Google Scholar 

  48. Poncelet, M., Auffray, N., Jailin, C., Somera, A., Morel, C.: Experimental strain gradient evidence in non-central symmetric lattice. In: EUROMECH-Colloquium 579 on Generalized and Microstructured Continua (2017)

  49. Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A Solids 69, 179–191 (2017)

    Article  MathSciNet  Google Scholar 

  50. Pawlikowski, M., Barcz, K.: Nonlinear viscoelastic constitutive model for bovine cortical bone tissue. Biocybern. Biomed. Eng. 36(3), 491–498 (2016)

    Article  Google Scholar 

  51. Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift für angewandte Mathematik und Physik 67(5), 122 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D.: Additive manufactured alsi10mg samples using selective laser melting (slm): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)

    Article  Google Scholar 

  53. Wautier, A., Bonelli, S., Nicot, F.: Scale separation between grain detachment and grain transport in granular media subjected to an internal flow. Granul. Matter 19(2), 22 (2017)

    Article  Google Scholar 

  54. Nicot, F., Xiong, H., Wautier, A., Lerbet, J., Darve, F.: Force chain collapse as grain column buckling in granular materials. Granul. Matter 19(2), 18 (2017)

    Article  Google Scholar 

  55. Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015). https://doi.org/10.1177/1081286515576821

  57. Misra, A., Poorsolhjouy, P.: Granular micromechanics model of anisotropic elasticity derived from gibbs potential. Acta Mech. 227(5), 1393 (2016)

    Article  MATH  Google Scholar 

  58. Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1–2), 63 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Li, X.: Internal structure quantification for granular constitutive modeling. J. Eng. Mech. 143(4), C4016001 (2016)

    Article  ADS  Google Scholar 

  61. Misra, A., Chang, C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)

    Article  MATH  Google Scholar 

  62. George, D., Spingarn, C., Dissaux, C., Nierenberger, M., Rahman, Ranya Abdel, Rémond, Yves: Examples of multiscale and multiphysics numerical modeling of biological tissues. Bio-Med. Mater. Eng. 28(s1), S15–S27 (2017)

    Article  Google Scholar 

  63. Nasedkin, A.V., Nasedkina, A.A, Rybyanets, A.N.: Modeling and computer design of piezoceramic materials with stochastic microporous structure and local alloying pore surfaces. In: Vandamme, M., Dangla, P., Pereira, J-M., Ghabezloo, S. (eds.) Poromechanics VI, pp. 724–731

  64. Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  65. Javili, A., Steinmann, P., Mosler, J.: Micro-to-macro transition accounting for general imperfect interfaces. Comput. Methods Appl. Mech. Eng. 317, 274–317 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  66. Javili, A., Ottosen, N.S., Ristinmaa, M., Mosler, J.: Aspects of interface elasticity theory. Math. Mech Solids (2017). https://doi.org/10.1177/1081286517699041

  67. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65(1), 010802 (2013)

    Article  ADS  Google Scholar 

  68. Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of short-fiber composites with gurtin-murdoch model of interphase. Int. J. Solids Struct. 97, 75–88 (2016)

    Article  Google Scholar 

  69. Rahali, Y., Ganghoffer, J.F., Chaouachi, F., Zghal, A.: Strain gradient continuum models for linear pantographic structures: a classification based on material symmetries. J. Geom. Symmetry Phys. 40, 35–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. Eugster, S.R.: Geometric continuum mechanics and induced beam theories. Springer (2016)

  71. Eugster, S.R., Glocker, C.: Determination of the transverse shear stress in an Euler–Bernoulli beam using non-admissible virtual displacements. PAMM 14(1), 187–188 (2014)

    Article  Google Scholar 

  72. Liebold, C., Müller, W.H.: Measuring material coefficients of higher gradient elasticity by using AFM techniques and raman-spectroscopy. In: Altenbach, H., Forest, S., Krivtsov, A. (eds.) Generalized Continua as Models for Materials. Advanced Structured Materials, vol. 22. Springer, Berlin, Heidelberg (2013)

  73. Eremeyev, V.A., Skrzat, A., Stachowicz, F.: On computational evaluation of stress concentration using micropolar elasticity. In: International Conference on Applied Physics, System Science and Computers, pp. 199–205. Springer (2017)

  74. Varygina, M.: Numerical modeling of micropolar thin elastic plates. In: International Conference on Numerical Analysis and Its Applications, pp. 690–697. Springer (2016)

  75. Boisse, P., Hamila, N., Madeo, A.: Simulations of 3D textile composite reinforcements. Specificities of the mechanical behavior. In: AIP Conference Proceedings, vol. 1896, pp. 030012. AIP Publishing (2017)

  76. Grigorenko, A.Y., Vlaikov, G.G.: Investigation of the static and dynamic behaviour of anisotropic cylindrical bodies with noncircular cross-section. Int. J. Solids Struct. 41(9), 2781–2798 (2004)

    Article  MATH  Google Scholar 

  77. Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69. Springer, Singapore (2017)

  78. Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M. (eds.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Advanced Structured Materials, vol. 59. Springer, Singapore (2017)

  79. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Cuomo, M., Dell’ÄôIsola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos. Part B: Eng. 115, 423–448 (2017)

    Article  Google Scholar 

  81. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  82. Contrafatto, L., Cuomo, M.: A framework of elastic-plastic damaging model for concrete under multiaxial stress states. Int. J. Plast 22(12), 2272–2300 (2006)

    Article  MATH  Google Scholar 

  83. Madenci, E., Oterkus, S.: Peridynamic modeling of thermo-oxidative damage evolution in a composite lamina. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 0197 (2017)

  84. Sheydakov, D.N., Altenbach, H.: Stability of inhomogeneous micropolar cylindrical tube subject to combined loads. Math. Mech. Solids 21(9), 1082–1094 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  85. Berezovski, A.: Internal variables associated with microstructures in solids. Mech. Res. Commun. (2017). https://doi.org/10.1016/j.mechrescom.2017.07.011

  86. Galich, P., Slesarenko, V., Rudykh, S.: Elastic wave propagation in soft microstructured composites undergoing finite deformations. PAMM 16(1), 627–628 (2016)

    Article  Google Scholar 

  87. Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Inelastic interaction and splitting of strain solitons propagating in a one-dimensional granular medium with internal stress. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol. 42. Springer, Cham (2016)

  88. Cheviakov, A.F., Ganghoffer, J.F., St Jean, S.: Fully nonlinear wave models in fiber-reinforced anisotropic incompressible hyperelastic solids. Int. J. Nonlinear Mech. 71, 8–21 (2015)

    Article  ADS  Google Scholar 

  89. Cheviakov, A.F., Ganghoffer, J.F., Rahouadj, R.: Finite strain plasticity models revealed by symmetries and integrating factors: the case of dafalias spin model. Int. J. Plast 44, 47–67 (2013)

    Article  Google Scholar 

  90. Rosi, G., Auffray, N.: Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)

    Article  Google Scholar 

  91. Rosi, G., Placidi, L., Auffray, N.: Anisotropic wave propagation within strain gradient framework: a focus on a mixed static-dynamic numerical procedure for parameter identification. In: EUROMECH-Colloquium 579 on Generalized and microstructured continua, vol. 69, pp. 195–206 (2017)

  92. Sadovskii, V.M., Sadovskaya, O.V.: On the acoustic approximation of thermomechanical description of a liquid crystal. Phys. Mesomech. 16(4), 312–318 (2013)

    Article  Google Scholar 

  93. Madeo, A., Barbagallo, G., Collet, M., d’Agostino, M.V., Miniaci, M., Neff, P.: Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: new perspectives towards metastructural design. Math. Mech. Solids (2017). https://doi.org/10.1177/1081286517728423

  94. Ganzosch, G., dell’Isola, F., Turco, e, Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2016)

    Article  Google Scholar 

  95. Lekszycki, T.: Optimality conditions in modelling of bone adaptation phenomenon. J. Theor. Appl. Mech. 3, 607–623 (1999)

    MATH  Google Scholar 

  96. Lekszycki, T.: Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 37(4–5), 343–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. Lekszycki, T.: Functional adaptation of bone as an optimal control problem. J. Theor. Appl. Mech. 43(3), 555–574 (2005)

    Google Scholar 

  98. Bednarczyk, E., Lekszycki, T.: A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Zeitschrift für angewandte Mathematik und Physik 67(4), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  99. Lekszycki, Tomasz, dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  100. Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 22(10), 1997–2010 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  101. Crevacore, E., Tosco, T., Sethi, R., Boccardo, G., Marchisio, D.L.: Recirculation zones induce non-fickian transport in three-dimensional periodic porous media. Phys. Rev. E 94(5), 053118 (2016)

    Article  ADS  Google Scholar 

  102. Serpieri, R., Travascio, F.: Variational macroscopic two-phase poroelasticity. Derivation of general medium-independent equations and stress partitioning laws. In: Variational Continuum Multiphase Poroelasticity. Advanced Structured Materials, vol. 67. Springer, Singapore (2017)

  103. Mühlich, U., Zybell, L., Kuna, M.: Estimation of material properties for linear elastic strain gradient effective media. Eur. J. Mech. A Solids 31(1), 117–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  104. Zybell, L., Mühlich, U., Kuna, M.: Constitutive equations for porous plane-strain gradient elasticity obtained by homogenization. Arch. Appl. Mech. 79(4), 359–375 (2009)

    Article  ADS  MATH  Google Scholar 

  105. De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A.: Modelling of stress-corrosion cracking by using peridynamics. Int. J. Hydrogen Energy 41(15), 6593–6609 (2016)

    Article  Google Scholar 

  106. De Meo, D., Russo, L., Oterkus, E.: Modeling of the onset, propagation, and interaction of multiple cracks generated from corrosion pits by using peridynamics. J. Eng. Mater. Technol. 139(4), 041001 (2017)

    Article  Google Scholar 

  107. Ndanou, S., Favrie, N., Gavrilyuk, S.: Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form. J. Elast. 115(1), 1–25 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  108. Ndanou, S., Favrie, N., Gavrilyuk, S.: Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. J. Comput. Phys. 295, 523–555 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Gavrilyuk, S., Ndanou, S., Hank, S.: An example of a one-parameter family of rank-one convex stored energies for isotropic compressible solids. J. Elast. 124(1), 133–141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  110. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  111. Biglar, M., Gromada, M., Stachowicz, F., Trzepieciński, T.: Synthesis of barium titanate piezoelectric ceramics for multilayer actuators (mlas). Acta Mech. Autom. 11(4), 275–279 (2017)

    Google Scholar 

  112. dell’Isola, F., Madeo, A., Seppecher, P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Ration. Mech. Anal. 219(3), 1305–1341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  113. dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la d’alambert and á la cauchy for higher gradient continuum theories are equivalent: a review of existing results. In: Proceedings of the Royal Society of London A, vol. 471, pp. 20150415. The Royal Society (2015)

  114. dell’Isola, F., Seppecher, F., Madeo, A.: How contact interactions may depend on the shape of cauchy cuts in nth gradient continua: approach, Äúà la d’alambert, Äú. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. dell’Isola, F., Seppecher, P., Madeo, A.: Beyond euler-cauchy continua: the structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. In: dell’Isola, F., Gavrilyuk, S. (eds.) Variational Models and Methods in Solid and Fluid Mechanics. CISM Courses and Lectures, vol. 535. Springer, Vienna (2011)

  116. dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  117. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech Anal. 1239(218), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  118. dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)

    Article  Google Scholar 

  119. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  120. dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to gabrio piola’s peridynamics and generalized continuum theories. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol. 42. Springer, Cham (2016)

  121. Turco, E., Golaszewski, M., Giorgio, I., Placidi, L.: Can a hencky-type model predict the mechanical behaviour of pantographic lattices? In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69. Springer, Singapore (2017)

  122. Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. In Proceedings of the Royal Society of London A, vol. 473, pp. 20170636. The Royal Society (2017)

  123. Turco, E., Giorgio, I., Misra, A., Dell’ÄôIsola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. Open. Sci. 4(10), 171153 (2017)

    Google Scholar 

  124. Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattice. hal-01672898 (2017)

  125. Battista, A., Della Corte, A., Dell’Isola, F., Seppecher, P.: Large deformations of 1d microstructured systems modeled as generalized timoshenko beams. hal-01625160 (2017)

  126. Lekszycki, T., Bucci, S., Del Vescovo, D., Turco, E., Rizzi, N.L.: A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 97(5), 515–531 (2017)

    Article  MathSciNet  Google Scholar 

  127. Giorgio, I., Andreaus, U., Dell’ÄôIsola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)

    Article  Google Scholar 

  128. Zhao, C.F., Yin, Z.Y., Misra, A., Hicher, P.Y.: Thermomechanical formulation for micromechanical elasto-plasticity in granular materials. Int. J. Solids Struct. 138, 64–75 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Government of the Russian Federation (contract No. 14.Y26.31.0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Laudato.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laudato, M., Di Cosmo, F. Euromech 579 Arpino 3–8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly)inextensible fibers—a review of presentations and discussions. Continuum Mech. Thermodyn. 30, 1011–1025 (2018). https://doi.org/10.1007/s00161-018-0654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0654-6

Keywords

Navigation