Skip to main content
Log in

Beyond kinetic relations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We introduce the concept of kinetic or rate equations for moving defects representing a natural extension of the more conventional notion of a kinetic relation. Algebraic kinetic relations, widely used to model dynamics of dislocations, cracks and phase boundaries, link the instantaneous value of the velocity of a defect with an instantaneous value of the driving force. The new approach generalizes kinetic relations by implying a relation between the velocity and the driving force which is nonlocal in time. To make this relation explicit one may need to integrate a system of kinetic equations. We illustrate the difference between kinetic relation and kinetic equations by working out in full detail a prototypical model of an overdamped defect in a one-dimensional discrete lattice. We show that the minimal nonlocal kinetic description, containing now an internal time scale, is furnished by a system of two ordinary differential equations coupling the spatial location of defect with another internal parameter that describes configuration of the core region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R., Knowles J.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114, 119–154 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abeyaratne R., Knowles J.K.: Evolution of Phase Transitions, A Continuum Theory. Cambridge University Press, London (2006)

    Book  Google Scholar 

  3. Abeyaratne R., Chu C., James R.D.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Phil. Mag. A 73, 457–497 (1996)

    Article  ADS  Google Scholar 

  4. Arndt M., Luskin M.: Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of Frenkel-Kontorova model. Multiscale Model. Simul. 7, 147–170 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berestycki H., Hamel F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Braides A., Truskinovsky L.: Asymptotic expansions by Γ-convergence. Continuum Mech. Thermodyn. 20(1), 21–62 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Braun O.M., Kivshar Y.S.: The Frenkel-Kontorova Model: Concepts, Methods And Applications. Texts and Monographs in Physics. Springer-Verlag, Berlin, Heidelberg (2004)

    Google Scholar 

  8. Braun O.M., Kivshar Y.S., Zelenskaya I.I.: Kinks in the Frenkel-Kontorova model with long-range interparticle interactions. Phys. Rev. B 41, 7118–7138 (1990)

    Article  ADS  Google Scholar 

  9. Carpio A., Bonilla L.L.: Depinning transitions in discrete reaction-diffusion equations. SIAM J. Appl. Math. 63(3), 1056–1082 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Celli V., Flytzanis N.: Motion of a screw dislocation in a crystal. J. Appl. Phys. 41(11), 4443–4447 (1970)

    Article  ADS  Google Scholar 

  11. Dirr N., Yip N.K.: Pinning and depinning phenomena in front propagation in heterogeneous media. Interfaces Free Boundaries 8, 79–109 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fáth G.: Propagation failure of traveling waves in discrete bistable medium. Physica D 116, 176–190 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Flach S., Kladko K.: Perturbation analysis of weakly discrete kinks. Phys. Rev. E 54, 2912–2916 (1996)

    Article  ADS  Google Scholar 

  14. Furuya K., de Almeida A.M.O.: Soliton energies in the standard map beyond the chaotic threshold. J. Phys. A 20, 6211–6221 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gruner G., Zawadowski A., Chaikin P.M.: Nonlinear conductivity and noise due to charge-density-wave depinning in NbSe3. Phys. Rev. Lett. 46, 511–515 (1981)

    Article  ADS  Google Scholar 

  16. Gurtin M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Applied Mathematical Sciences, vol. 137. Springer-Verlag, New York (1999)

    Google Scholar 

  17. Hobart R.: Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944–1948 (1965)

    Article  ADS  Google Scholar 

  18. Hobart R.: Peierls barrier analysis. J. Appl. Phys. 37, 3573–3576 (1966)

    Article  ADS  Google Scholar 

  19. Ishibashi Y., Suzuki I.: On the evaluation of the pinning (Peierls) energy of kinks due to discreteness of substrate lattices. J. Phys. Soc. Jpn. 53, 4250–4256 (1984)

    Article  ADS  Google Scholar 

  20. Ishimori Y., Munakata T.: Kink dynamics in the discrete Sine-Gordon system: a perturbational approach. J. Phys. Soc. Jpn. 51, 3367–3374 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  21. Joos B.: Properties of solitons in the Frenkel–Kontorova model. Solid State Commun. 42, 709–713 (1982)

    Article  ADS  Google Scholar 

  22. Kardar M.: Nonequilibrium dynamics of interfaces and lines. Phys. Rep. 301, 85–112 (1998)

    Article  Google Scholar 

  23. Keener J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kladko K., Mitkov I., Bishop A.R.: Universal scaling of wave propagation failure in arrays of coupled nonlinear cells. Phys. Rev. Lett. 84(19), 4505–4508 (2000)

    Article  ADS  Google Scholar 

  25. Kresse O., Truskinovsky L.: Mobility of lattice defects: discrete and continuum approaches. J. Mech. Phys. Solids 51, 1305–1332 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Kresse O., Truskinovsky L.: Prototypical lattice model of a moving defect: the role of environmental viscosity. Izvestiya, Phys. Solid Earth 43, 63–66 (2007)

    Article  ADS  Google Scholar 

  27. Lazutkin V.F., Schachmannski I.G., Tabanov M.B.: Splitting of separatrices for standard and semistandard mappings. Physica D 40, 235–348 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. LeFloch P.G.: Hyperbolic Systems of Conservation Laws. ETH Lecture Note Series. Birkhouser, Switzerland (2002)

    Google Scholar 

  29. Li X., E W.: Multiscale modeling of the dynamics of solids at finite temperature. J. Mech. Phys. Solids 53, 1650–1685 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Maugin G.A.: Material Inhomogeneities in Elasticity. Applied Mathematics and Mathematical Computation: vol 3. Chapman and Hall, London (1993)

    Google Scholar 

  31. Pokrovsky V.L.: Splitting of commensurate-incommensurate phase transition. J. Phys. (Paris) 42(6), 761–766 (1981)

    MathSciNet  Google Scholar 

  32. Rice J.R., Ruina A.L.: Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983)

    Article  MATH  Google Scholar 

  33. Ruina, A.L.: Constitutive relations for frictional slip. In: Mechanics of Geomaterials, Numerical methods in Engineering, pp 169–187. Willey, New York (1985)

  34. Slemrod M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 81, 301–315 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Slepyan L.I.: The relation between the solutions of mixed dynamical problems for a continuous elastic medium and a lattice. Sov. Phys. Doklady 27(9), 771–772 (1982)

    MATH  ADS  Google Scholar 

  36. Slepyan L.I., Cherkaev A., Cherkaev E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53, 407–436 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Tadmor E.B., Ortiz M., Phillips R.: Quasicontinuum analysis of defects in solids. Phil. Mag. A 73, 1529–1563 (1996)

    Article  ADS  Google Scholar 

  38. Truskinovsky L.: Equilibrium interphase boundaries. Sov. Phys. Doklady 27, 306–331 (1982)

    Google Scholar 

  39. Truskinovsky L.: Dynamics of nonequilibrium phase boundaries in a heat conducting elastic medium. J. Appl. Math. Mech. 51, 777–784 (1987)

    Article  MathSciNet  Google Scholar 

  40. Truskinovsky L., Vainchtein A.: Peierls-Nabarro landscape for martensitic phase transitions. Phys. Rev. B 67, 172103 (2003)

    Article  ADS  Google Scholar 

  41. Truskinovsky L., Vainchtein A.: The origin of nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52, 1421–1446 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Truskinovsky L., Vainchtein A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66, 533–553 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. Truskinovsky L., Vainchtein A.: Dynamics of martensitic phase boundaries: discreteness, dissipation and inertia. Continuum Mech. Thermodyn. 20(2), 97–122 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Weiner J.H.: Dislocation velocities in a linear chain. Phys. Rev. 136(3A), 863–868 (1964)

    Article  ADS  Google Scholar 

  45. Willis C.R., El-Batanouny M., Stancioff P.: Sine-Gordon kinks on a discrete lattice. I. Hamiltonian formalism. Phys. Rev. B 33, 1904–1911 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vainchtein.

Additional information

Communicated by Stefan Seelecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truskinovsky, L., Vainchtein, A. Beyond kinetic relations. Continuum Mech. Thermodyn. 22, 485–504 (2010). https://doi.org/10.1007/s00161-010-0167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0167-4

Keywords

Navigation