Skip to main content
Log in

Interface motion by interface diffusion driven by bulk energy: justification of a diffusive interface model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We construct an asymptotic solution of a system consisting of the partial differential equations of linear elasticity theory coupled with a degenerate parabolic equation, and show that when a regularity parameter tends to zero, this solution converges to a solution of a sharp interface model, which describes the phase interface in an elastically deformable solid moving by interface diffusion. Therefore, the coupled system can be used as diffusive interface model. Differently from diffusive interface models based on the Cahn–Hilliard equation, the interface diffusion is solely driven by the bulk energy, hence the Laplacian of the curvature is not part of the driving force. Also, no rescaling of the parabolic equation is necessary. Since the asymptotic solution does not solve the system exactly, the proof is formal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber H.-D.: Evolving microstructure and homogenization. Continum. Mech. Thermodyn. 12, 235–286 (2000). doi:10.1007/s001610050137

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Alber H.-D., Zhu P.: Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces. SIAM J. Appl. Math. 66(2), 680–699 (2006). doi:10.1137/050629951

    Article  MATH  MathSciNet  Google Scholar 

  3. Alber H.-D., Zhu P.: Evolution of phase boundaries by configurational forces. Arch. Rational Mech. Anal. 185, 235–286 (2007). doi:10.1007/s00205-007-0054-8

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Alber H.-D., Zhu P.: Solutions to a model for interface motion by interface diffusion. Proc. R. Soc. Edinburgh A 138(5), 923–955 (2008). doi:10.1017/S0308210507000170

    Article  MATH  MathSciNet  Google Scholar 

  5. Alikakos N.D., Bates P.W., Chen X.: Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Rational Mech. Anal. 128, 165–205 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Barrett J., Garcke H., Nürnberg R.: Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid. Math. Comput. 75(253), 7–41 (2006)

    MATH  ADS  Google Scholar 

  7. Bhate D., Kumar A., Bower F.: Diffuse interface model for electromigration and stress voiding. J. Appl. Phys. 87(4), 1712–1721 (2000)

    Article  ADS  Google Scholar 

  8. Caginalp G.: The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math. 44, 77–94 (1990) 795–801

    Article  MATH  MathSciNet  Google Scholar 

  9. Caginalp G., Chen X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9, 417–445 (1998) 795–801

    Article  MATH  MathSciNet  Google Scholar 

  10. Cahn J., Taylor J.: Surface motion by surface diffusion. Acta Metall. Mater. 42(4), 1045–1063 (1994)

    Article  Google Scholar 

  11. Cahn J., Elliott C., Novick-Cohen A.: The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cahn J., Fife P., Penrose O.: A phase-field model for diffusion-induced grain-boundary motion. Acta Mater. 45(10), 4397–4413 (1997)

    Article  Google Scholar 

  13. Davi F., Gurtin M.E.: On the motion of a phase interface by surface diffusion. Z. Angew. Math. Phys. 41(6), 782–811 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elliott C.M., Garcke H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404– 423 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Escher J., Mayer U., Simonett G.: The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29(6), 1419–1433 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Escher J., Giga Y., Ito K.: On a limiting motion and self-intersections of curves moved by the intermediate surface diffusion flow. Nonlinear Anal. 47, 3717–3728 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Escher J., Garcke H., Ito K.: Exponential stability for a mirror-symmetric three phase boundary motion by surface diffusion. Math. Nachr. 257, 3–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Evans L.C., Soner H.M., Souganidis P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fife P., Wang X.: Chemically induced grain boundary dynamics, forced motion by curvature, and the appearance of double seams. Eur. J. Appl. Math. 13, 25–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fife P., Cahn J., Elliott C.: A free-boundary model for diffusion-induced grain boundary motion. Interfaces Free Boundaries 3, 291–336 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fried E., Gurtin M.: Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D 72, 287–308 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Garcke H., Wieland S.: Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37(6), 2025–2048 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Garcke H., Nürnberg R., Styles V.: Stress and diffusion induced interface motion: modelling and numerical simulations. Eur. J. Appl. Math. 18(6), 631–657 (2007)

    Article  MATH  Google Scholar 

  24. Leo P., Lowengrub J., Jou H.: A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46(6), 2113–2130 (1998)

    Article  Google Scholar 

  25. Mullins W.: Theory of thermal grooving. J. Appl. Phys. 28(3), 333–339 (1957)

    Article  ADS  Google Scholar 

  26. Pego R.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 422, 261–278 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Rätz A., Voigt A.: PDE’s on surfaces—a diffuse interface approach. Commun. Math. Sci. 4(3), 575–590 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Riedel H., Zipse H., Svoboda J.: Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—II. Diffusional densification and creep. Acta Metall. Mater. 42(2), 445– 452 (1994)

    Article  Google Scholar 

  29. Stoth B.: Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Diff. Equations 125, 154–183 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Svoboda J., Riedel H.: Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering. Acta Metall. Mater. 40(11), 2829–2840 (1992)

    Article  Google Scholar 

  31. Svoboda J., Riedel H., Zipse H.: Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—I. Computation of equilibrium surfaces. Acta Metall. Mater. 42(2), 435– 443 (1994)

    Article  Google Scholar 

  32. Taylor J., Cahn J.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77(1/2), 183–197 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Taylor J., Cahn J.: Diffuse interface with sharp corners and facets: Phase field models with strongly anisotropic surfaces. Physica D 112, 381–411 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dieter Alber.

Additional information

Communicated by Prof. Epifanio Virga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alber, HD., Zhu, P. Interface motion by interface diffusion driven by bulk energy: justification of a diffusive interface model. Continuum Mech. Thermodyn. 23, 139–176 (2011). https://doi.org/10.1007/s00161-010-0162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0162-9

Keywords

Navigation