Skip to main content

Advertisement

Log in

Non-thermal emission processes in massive binaries

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic. These results concern the radio, the visible, the X-ray and the γ-ray domains. Prospects for the very high energy γ-ray emission from massive stars will also be addressed. Two particularly interesting examples—one O-type and one Wolf-Rayet binary—will be considered in details. Finally, strategies for future developments in this field will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott DC, Lucy LB (1985) Multiline transfer and the dynamics of stellar winds. ApJ 288:679–693. doi:10.1086/162834

    ADS  Google Scholar 

  • Abbott DC, Bieging JH, Churchwell E (1984) The detection of variable, nonthermal radio emission from two O type stars. ApJ 280:671–678, doi:10.1086/162040

    ADS  Google Scholar 

  • Abbott DC, Torres AV, Bieging JH, Churchwell E (1986) Radio emission from galactic Wolf-Rayet stars and the structure of Wolf-Rayet winds. ApJ 303:239–261. doi:10.1086/164070

    ADS  Google Scholar 

  • Aharonian F, Akhperjanian AG, Aye KM, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Berghaus P, Bernlöhr K, Bolz O, Boisson C, Borgmeier C, Breitling F, Brown AM, Bussons Gordo J, Chadwick PM, Chitnis VR, Chounet LM, Cornils R, Costamante L, Degrange B, Djannati-Ataï A, O’C Drury L, Ergin T, Espigat P, Feinstein F, Fleury P, Fontaine G, Funk S, Gallant Y, Giebels B, Gillessen S, Goret P, Guy J, Hadjichristidis C, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Holleran M, Horns D, de Jager OC, Jung I, Khélifi B, Komin N, Konopelko A, Latham IJ, Le Gallou R, Lemoine M, Lemière A, Leroy N, Lohse T, Marcowith A, Masterson C, McComb TJL, de Naurois M, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pohl M, Pühlhofer G, Punch M, Raubenheimer BC, Raue M, Raux J, Rayner SM, Redondo I, Reimer A, Reimer O, Ripken J, Rivoal M, Rob L, Rolland L, Rowell G, Sahakian V, Saugé L, Schlenker S, Schlickeiser R, Schuster C, Schwanke U, Siewert M, Sol H, Steenkamp R, Stegmann C, Tavernet JP, Théoret CG, Tluczykont M, van der Walt DJ, Vasileiadis G, Vincent P, Visser B, Völk HJ, Wagner SJ (2004) Very high energy gamma rays from the direction of Sagittarius A*. A&A 425:L13–L17. doi:10.1051/0004-6361:200400055

    ADS  Google Scholar 

  • Aharonian F, Akhperjanian A, Beilicke M, Bernlöhr K, Börst HG, Bojahr H, Bolz O, Coarasa T, Contreras J, Cortina J, Denninghoff S, Fonseca V, Girma M, Götting N, Heinzelmann G, Hermann G, Heusler A, Hofmann W, Horns D, Jung I, Kankanyan R, Kestel M, Kohnle A, Konopelko A, Kranich D, Lampeitl H, Lopez M, Lorenz E, Lucarelli F, Mang O, Mazin D, Meyer H, Mirzoyan R, Moralejo A, Oña-Wilhelmi E, Panter M, Plyasheshnikov A, Pühlhofer G, de los Reyes R, Rhode W, Ripken J, Rowell GP, SahakianV, Samorski M, Schilling M, Siems M, Sobzynska D, Stamm W, Tluczykont M, Vitale V, Völk HJ, Wiedner CA, Wittek W (2005) The unidentified TeV source (TeV J2032+4130) and surrounding field: Final HEGRA IACT-System results. A&A 431:197–202, doi:10.1051/0004-6361:20041552

    ADS  Google Scholar 

  • Albacete Colombo JF, Micela G (2005) X-ray analysis of the close binary system FO 15. In: Massive stars and high-energy emission in OB associations, pp 69–72

  • Aznar Cuadrado R, Jordan S, Napiwotzki R, Schmid HM, Solanki SK, Mathys G (2004) Discovery of kilogauss magnetic fields in three DA white dwarfs. A&A 423:1081–1094. doi:10.1051/0004-6361:20040355

    ADS  Google Scholar 

  • Baring MG, Ellison DC, Reynolds SP, Grenier IA, Goret P (1999) Radio to gamma-ray emission from shell-type supernova remnants: predictions from nonlinear shock acceleration models. ApJ 513:311–338. doi:10.1086/306829

    ADS  Google Scholar 

  • Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. MNRAS 182:147–156

    ADS  Google Scholar 

  • Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. MNRAS 182:443–455

    ADS  Google Scholar 

  • Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS 353:550–558. doi:10.1111/j.1365-2966.2004.08097.x

    ADS  Google Scholar 

  • Benaglia P, Koribalski B (2004) Radio observations of HD 93129A: The earliest O star with the highest mass loss? A&A 416:171–178. doi:10.1051/0004-6361:20034138

    ADS  Google Scholar 

  • Benaglia P, Romero GE (2003) Gamma-ray emission from Wolf-Rayet binaries. A&A 399:1121–1134. doi:10.1051/0004-6361:20021854

    ADS  Google Scholar 

  • Benaglia P, Cappa CE, Koribalski BS (2001a) Mass loss rate determination of southern OB stars. A&A 372:952–962. doi:10.1051/0004-6361:20010617

    ADS  Google Scholar 

  • Benaglia P, Romero GE, Stevens IR, Torres DF (2001b) Can the gamma-ray source 3EG J2033+4118 be produced by the stellar system Cygnus OB2 No 5? A&A 366:605–611. doi:10.1051/0004-6361:20000261

    ADS  Google Scholar 

  • Benaglia P, Romero GE, Koribalski B, Pollock AMT (2005) Multiwavelength studies of WR 21a and its surroundings. A&A 440:743–750. doi:10.1051/0004-6361:20042617

    ADS  Google Scholar 

  • Berghoefer TW, Schmitt JHMM, Danner R, Cassinelli JP (1997) X-ray properties of bright OB-type stars detected in the ROSAT all-sky survey. A&A 322:167–174

    ADS  Google Scholar 

  • Bieging JH, Abbott DC, Churchwell EB (1989) A survey of radio emission from Galactic OB stars. ApJ 340:518–536. doi:10.1086/167414

    ADS  Google Scholar 

  • Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. ApJ 221:L29–L32. doi:10.1086/182658

    ADS  Google Scholar 

  • Blomme R (2005) Observations of non-thermal radio emission in O-type stars. In: Massive stars and high-energy emission in OB associations, JENAM 2005, held in Liège, Belgium, pp 45–48

  • Blomme R, van Loo S, De Becker M, Rauw G, Runacres MC, Setia Gunawan DYA, Chapman JM (2005) Non-thermal radio emission from O-type stars. I. HD168112. A&A 436:1033–1040. doi:10.1051/0004-6361:20042383

    ADS  Google Scholar 

  • Blomme R, De Becker M, Runacres MC, van Loo S, Setia Gunawan DYA (2007) Non-thermal radio emission from O-type stars. II. HD 167971. A&A 464:701–708. doi:10.1051/0004-6361:20054602, arXiv:astro-ph/0611768

    ADS  Google Scholar 

  • Blumenthal GR, Gould RJ (1970) Bremsstrahlung, Synchrotron Radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev Modern Phy 42:237–271

    ADS  Google Scholar 

  • Brown JC, Richardson LL, Antokhin I, Robert C, Moffat AFJ, St-Louis N (1995) Combined spectrometric, photometric and polarimetric diagnostics for ‘blobs’ in WR star winds. A&A 295:725–735

    ADS  Google Scholar 

  • Butt YM, Benaglia P, Combi JA, Corcoran M, Dame TM, Drake J, Kaufman Bernadó M, Milne P, Miniati F, Pohl M, Reimer O, Romero GE, Rupen M (2003) Chandra/very large array follow-up of TeV J2032+4131, the Only Unidentified TeV Gamma-Ray Source. ApJ 597:494–512. doi:10.1086/378121, astro-ph/0302342

    ADS  Google Scholar 

  • Butt YM, Combi JA, Drake J, Finley JP, Konopelko A, Lister M, Rodriguez J (2007) TeV J2032+4130: a not-so-dark Accelerator? ArXiv Astrophysics e-prints astro-ph/0611731

  • Campbell CG (1997) Magnetohydrodynamics in Binary Stars. Kluwer, Dordrecht

    Google Scholar 

  • Cappa C, Goss WM, van der Hucht KA (2004) A Very Large Array 3.6 Centimeter Continuum Survey of Galactic Wolf-Rayet Stars. Astron J 127:2885–2897. doi:10.1086/383286

    ADS  Google Scholar 

  • Castor JI, Abbott DC, Klein RI (1975) Radiation-driven winds in Of stars. ApJ 195:157–174

    ADS  Google Scholar 

  • Chapman JM, Leitherer C, Koribalski B, Bouter R, Storey M (1999) Radio continuum measurements of southern early-type stars. III. Nonthermal emission from Wolf-Rayet Stars. ApJ 518:890–900. doi:10.1086/307314

    ADS  Google Scholar 

  • Charbonneau P, MacGregor KB (2001) Magnetic fields in massive stars. I. Dynamo Models. ApJ 559:1094–1107. doi:10.1086/322417

    ADS  Google Scholar 

  • Chen W, White RL, Bertsch D (1996) Possible detection of π 0-decay γ-ray emission from CYG OB2 by EGRET. A&As 120:423–426

    ADS  Google Scholar 

  • Cheng KS, Romero GE (2004) Cosmic gamma-ray sources. Kluwer, Dordrecht

    Google Scholar 

  • Contreras ME, Rodriguez LF, Tapia M, Cardini D, Emanuele A, Badiali M, Persi P (1997) Hipparcos, VLA, and CCD Observations of cygnus OB2 No. 5: solving the mystery of the radio “Companion”. ApJ 488:L153+. doi:10.1086/310928

    ADS  Google Scholar 

  • Cowling TG (1945) On the Sun’s general magnetic field. MNRAS 105:166–174

    ADS  Google Scholar 

  • De Becker M (2001) Recherche de la composante d’émission X non-thermique d’un échantillon d’étoiles massives. Master’s thesis, University of Liège

  • De Becker M (2005) A multiwavelength observational study of the non-thermal emission from O-type stars. PhD thesis, University of Liège

  • De Becker M, Rauw G (2005) Evidence for phase-locked X-ray variations from the colliding wind massive binary Cyg OB2 #8A. In: Massive Stars and High-Energy Emission in OB Associations, JENAM 2005, held in Liège, Belgium, pp 73–76

  • De Becker M, Rauw G (2007) New colliding wind massive binaries. In: Massive stars in interacting binaries, held in Sacacomie, Canada, ASP Conference Series, in press

  • De Becker M, Rauw G, Blomme R, Waldron WL, Sana H, Pittard JM, Eenens P, Stevens IR, Runacres MC, Van Loo S, Pollock AMT (2004a) Quasi-simultaneous XMM-Newton and VLA observation of the non-thermal radio emitter HD 168112 (O5.5III(f+)). A&A. 420:1061–1077. doi:10.1051/0004-6361:20041030

    ADS  Google Scholar 

  • De Becker M, Rauw G, Manfroid J (2004b) A Spectroscopic study of the non-thermal radio emitter Cyg OB2 #8A: discovery of a new binary system. A&A 424:L39–L42. doi:10.1051/0004-6361:200400049

    ADS  Google Scholar 

  • De Becker M, Rauw G, Pittard JM, Antokhin II, Stevens IR, Gosset E, Owocki SP (2004c) An XMM-Newton observation of the massive binary HD 159176. A&A 416:221–233. doi:10.1051/0004-6361:20031710

    ADS  Google Scholar 

  • De Becker M, Rauw G, Blomme R, Pittard JM, Stevens IR, Runacres MC (2005a) An XMM-Newton observation of the multiple system HD 167971 (O5-8V + O5-8V + (O8I)) and the young open cluster NGC 6604. A&A 437:1029–1046 doi:10.1051/0004-6361:20052810

    ADS  Google Scholar 

  • De Becker M, Rauw G, Swings J (2005b) On the Multiplicity of the O-Star Cyg OB2 #8a and its contribution to the γ-ray Source 3EG J2033+4118. Astrophys Space Sci 297:291–298. doi:10.1007/s10509-005-7667-x

    ADS  Google Scholar 

  • De Becker M, Rauw G, Manfroid J, Eenens P (2006a) Early-type stars in the young open cluster IC 1805. II. The probably single stars HD 15570 and HD 15629, and the massive binary/triple system HD 15558. A&A 456:1121–1130. doi:10.1051/0004-6361:20065300, arXiv:astro-ph/0606379

    ADS  Google Scholar 

  • De Becker M, Rauw G, Sana H, Pollock AMT, Pittard JM, Blomme R, Stevens IR, van Loo S (2006b) XMM-Newton observations of the massive colliding wind binary and non-thermal radio emitter CygOB2#8A [O6If + O5.5III(f)]. MNRAS 371:1280–1294. doi:10.1111/j.1365-2966.2006.10746.x

    ADS  Google Scholar 

  • De Becker M, Rauw G, Pittard J, Blomme R, Romero G, Sana H, Stevens I (2007a) The investigation of particle acceleration in colliding-wind massive binaries with SIMBOL-X. In: SIMBOL-X: the hard X-ray Universe in focus, held in Bologne, Italy, Mem S A It (in press)

  • De Becker M, Rauw G, Pittard J, Sana H, Stevens I, Romero G (2007b) INTEGRAL-ISGRI observations of the Cyg OB2 region. Searching for hard X-ray point sources in a region containing several non-thermal emitting massive stars., A&A (in press)

  • Decourchelle A, Ellison DC, Ballet J (2000) Thermal X-Ray emission and cosmic-ray production in young supernova remnants. ApJ 543:L57–L60. doi:10.1086/318167

    ADS  Google Scholar 

  • Donati JF (2004) ESPaDOnS@CFHT: the new generation stellar spectropolarimeter. In: SF2A-2004: Semaine de l’Astrophysique Francaise, p 217

  • Donati JF, Wade GA, Babel J, Henrichs Hf, de Jong JA, Harries TJ (2001) The magnetic field and wind confinement of β Cephei: new clues for interpreting the Be phenomenon? MNRAS 326:1265–1278. doi:10.1046/j.1365-8711.2001.04713.x

    ADS  Google Scholar 

  • Donati JF, Babel J, Harries TJ, Howarth ID, Petit P, Semel M (2002) The magnetic field and wind confinement of θ 1 Orionis C. MNRAS 333:55–70. doi:10.1046/j.1365-8711.2002.05379.x

    ADS  Google Scholar 

  • Dougherty SM, Williams PM (2000) Non-thermal emission in Wolf-Rayet stars: are massive companions required? MNRAS 319:1005–1010

    ADS  Google Scholar 

  • Dougherty SM, Pittard JM, Kasian L, Coker RF, Williams PM, Lloyd HM (2003) Radio emission models of colliding-wind binary systems. A&A 409:217–233, doi:10.1051/0004-6361:20031048

    ADS  Google Scholar 

  • Dougherty SM, Beasley AJ, Claussen MJ, Zauderer BA, Bolingbroke NJ (2005a) High-resolution radio observations of the colliding-wind binary WR 140. ApJ 623:447–459, doi:10.1086/428494

    ADS  Google Scholar 

  • Dougherty SM, Pittard JM, O’Connor EP (2005b) Radio emission from colliding-wind binaries: observations and models. In: Massive stars and high-energy emission in OB associations, pp 49–52

  • Drake SA (1990) Radio-continuum observations of a small sample of hot stars. Astron. J. 100:572–578. doi:10.1086/115541

    ADS  Google Scholar 

  • Eichler D, Usov V (1993) Particle acceleration and nonthermal radio emission in binaries of early-type stars. ApJ 402:271–279. doi:10.1086/172130

    ADS  Google Scholar 

  • Eversberg T, Lepine S, Moffat AFJ (1996) Blobs also in O star winds. In: Wolf-Rayet Stars in the framework of stellar evolution, 33rd Liège International Astrophysical Colloquium, held in Liège, Belgium, pp 225–230

  • Eversberg T, Lepine S, Moffat AFJ (1998) Outmoving Clumps in the Wind of the Hot O Supergiant zeta Puppis. ApJ 494:799–805. doi:10.1086/305218

    ADS  Google Scholar 

  • Feldmeier A (1995) Time-dependent structure and energy transfer in hot star winds. A&A 299:523

    ADS  Google Scholar 

  • Feldmeier A, Puls J, Pauldrach AWA (1997) A possible origin for X-rays from O stars. A&A 322:878–895

    ADS  Google Scholar 

  • Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75:1169–1174. doi:10.1103/PhysRev.75.1169

    MATH  ADS  Google Scholar 

  • Ferrario L, Wickramasinghe DT (2005) Magnetic fields and rotation in white dwarfs and neutron stars. MNRAS 356:615–620. doi:10.1111/j.1365-2966.2004.08474.x

    ADS  Google Scholar 

  • Florkowski DR, Gottesman ST (1977) HD 193793, a radio-emitting Wolf-Rayet binary star. MNRAS 179:105–110

    ADS  Google Scholar 

  • García B, Mermilliod JC (2001) High-mass binaries in the very young open cluster NGC 6231. Implication for cluster and star formation. A&A 368:122–136. doi:10.1051/0004-6361:20000528

    Google Scholar 

  • Gies DR (1987) The kinematical and binary properties of association and field O stars. ApJs 64:545–563. doi:10.1086/191208

    ADS  Google Scholar 

  • Gies DR, Mason BD, Hartkopf WI, McAlister HA, Frazin RA, Hahula ME, Penny LR, Thaller ML, Fullerton AW, Shara MM (1993) Binary star orbits from speckle interferometry. 5: A combined speckle/spectroscopic study of the O star binary 15 Monocerotis. Astron. J. 106:2072–2080. doi:10.1086/116786

    ADS  Google Scholar 

  • Gosset E (2005) private communication

  • Harvin JA, Gies DR, Bagnuolo WG, Penny LR, Thaller ML (2002) Tomographic Separation of Composite Spectra. VIII. The physical properties of the massive compact binary in the triple star system HD 36486 (δ Orionis A). ApJ 565:1216–1230. doi:10.1086/324705

    ADS  Google Scholar 

  • Hubrig S, Szeifert T, Schöller M, Mathys G, Kurtz DW (2004) New measurements of magnetic fields of roAp stars with FORS 1 at the VLT. A&A 415:685–689. doi:10.1051/0004-6361:20031486

    ADS  Google Scholar 

  • Kahn SM, Leutenegger MA, Cottam J, Rauw G, Vreux JM, den Boggende AJF, Mewe R, Güdel M (2001) High resolution X-ray spectroscopy of zeta Puppis with the XMM-Newton reflection grating spectrometer. A&A 365:L312–L317. doi:10.1051/0004-6361:20000093, arXiv:astro-ph/0011026

    ADS  Google Scholar 

  • Kitchatinov LL, Jardine M, Donati JF (2000) Magnetic cycle of LQ Hydrae: observational indications and dynamo model. MNRAS 318:1171–1176

    ADS  Google Scholar 

  • Konopelko A, Atkins RW, Blaylock G, Buckley JH, Butt Y, Carter-Lewis DA, Celik O, Cogan P, Chow YCK, Cui W, Dowdall C, Ergin T, Falcone AD, Fegan DJ, Fegan SJ, Finley JP, Fortin P, Gillanders GH, Gutierrez KJ, Hall J, Hanna D, Horan D, Hughes SB, Humensky TB, Imran A, Jung I, Kaaret P, Kenny GE, Kertzman M, Kieda DB, Kildea J, Knapp J, Kosack K, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Moriarty P, Mukherjee R, Nagai T, Ong RA, Perkins JS, Pohl M, Ragan K, Reynolds PT, Rose HJ, Sembroski GH, Schrödter M, Smith AW, Steele D, Syson A, Swordy SP, Toner JA, Valcarcel L, Vassiliev VV, Wagner RG, Wakely SP, Weekes TC, White RJ, Williams DA, Zitzer B (2007) Observations of the unidentified TeV γ-ray source TeV J2032+4130 with the Whipple Observatory 10 m Telescope. ApJ 658:1062–1068, doi:10.1086/511262, arXiv:astro-ph/0611730

    ADS  Google Scholar 

  • Kudritzki RP (1996) Spectral analyses with the standard model. Part I: Spectral diagnostics of luminous blue supergiants. In: Wolf-Rayet Stars in the Framework of Stellar Evolution, 33rd Liège International Astrophysical Colloquium, held in Liège, Belgium, pp 467–489

  • Lanotte A (2006) Etude de la multiplicité des étoiles de type O dans l’amas ouvert Trumpler 16. Graduate thesis, University of Liège

  • Leitherer C, Forbes D, Gilmore AC, Hearnshaw J, Klare G, Krautter J, Mandel H, Stahl O, Strupat W, Wolf B, Zickgraf FJ, Zirbel E (1987) Photometry and spectroscopy of the O-type variable HD 167971. A&A 185:121–130

    ADS  Google Scholar 

  • Leitherer C, Chapman JM, Koribalski B (1995) Radio continuum measurements of southern early-type stars. ApJ 450:289–301. doi:10.1086/176140

    ADS  Google Scholar 

  • Longair MS (1992) High energy astrophysics 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Lucy LB, Solomon PM (1970) Mass loss by hot stars. ApJ 159:879–894

    ADS  Google Scholar 

  • Lucy LB, White RL (1980) X-ray emission from the winds of hot stars. ApJ 241:300–305. doi:10.1086/158342

    ADS  Google Scholar 

  • MacDonald J, Mullan DJ (2004) Magnetic fields in massive stars: dynamics and origin. MNRAS 348:702–716. doi:10.1111/j.1365-2966.2004.07394.x

    ADS  Google Scholar 

  • MacGregor KB, Cassinelli JP (2003) Magnetic fields in massive stars. II. The buoyant rise of magnetic flux tubes through the radiative interior. ApJ 586:480–494. doi:10.1086/346257

    ADS  Google Scholar 

  • Maeder A, Meynet G (2003) Stellar evolution with rotation and magnetic fields. I. The relative importance of rotational and magnetic effects. A&A 411:543–552. doi:10.1051/0004-6361:20031491

    ADS  Google Scholar 

  • Maeder A, Meynet G (2004) Stellar evolution with rotation and magnetic fields. II. General equations for the transport by Tayler-Spruit dynamo. A&A 422:225–237. doi:10.1051/0004-6361:20034583

    ADS  Google Scholar 

  • Manchanda RK, Polcaro VF, Norci L, Giovannelli F, Brinkmann W, Radecke HD, Manteiga M, Persi P, Rossi C (1996) X-ray and γ-ray emission in open clusters. A&A 305:457–467

    ADS  Google Scholar 

  • Melrose DB (1970) A Razin-Tsytovich effect for Bremsstrahlung. Astrophys Space Sci 18:267–272

    ADS  Google Scholar 

  • Michaud G, Charland Y, Megessier C (1981) Diffusion models for magnetic Ap-Bp stars. A&A 103:244–262

    ADS  Google Scholar 

  • Moffat AFJ, Lepine S, Henriksen RN, Robert C (1994) First wavelet analysis of emission line variations in Wolf-Rayet stars. Astrophys Space Sci 216:55–65

    ADS  Google Scholar 

  • Monnier JD, Greenhill LJ, Tuthill PG, Danchi WC (2002) Radio and Infrared Properties of Dust-Enshrouded Wolf-Rayet Stars. In: ASP Conference Seres 260: Interacting Winds from Massive Stars, p 331

  • Moss D (2003) The survival of fossil magnetic fields during pre-main sequence evolution. A&A 403:693–697. doi:10.1051/0004-6361:20030431

    ADS  Google Scholar 

  • Neiner C, Geers VC, Henrichs HF, Floquet M, Frémat Y, Hubert AM, Preuss O, Wiersema K (2003) Discovery of a magnetic field in the Slowly Pulsating B star ζ Cassiopeiae. A&A 406:1019–1031. doi:10.1051/0004-6361:20030742

    ADS  Google Scholar 

  • Nelan EP, Walborn NR, Wallace DJ, Moffat AFJ, Makidon RB, Gies DR, Panagia N (2004) Resolving OB systems in the Carina Nebula with the Hubble Space Telescope Fine Guidance Sensor. Astron J 128:323–329. doi:10.1086/420716

    ADS  Google Scholar 

  • O’Connor EP, Dougherty SM, Pittard JM, Williams PM (2005) The colliding winds of WR 146: seeing the works. In: Rauw G, Nazé Y, Blomme R (ed) Massive stars and high-energy emission in OB associations, pp 81–84

  • Owocki SP, Rybicki GB (1985) Instabilities in line-driven stellar winds. II - Effect of scattering. ApJ 299:265–276. doi:10.1086/163697

    ADS  Google Scholar 

  • Owocki SP, Castor JI, Rybicki GB (1988) Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model. ApJ 335:914–930. doi:10.1086/166977

    ADS  Google Scholar 

  • Panagia N, Felli M (1975) The spectrum of the free-free radiation from extended envelopes. A&A 39:1–5

    ADS  Google Scholar 

  • Parker EN (1955) Hydromagnetic dynamo models. ApJ 122:293–314

    ADS  Google Scholar 

  • Pauldrach A, Puls J, Kudritzki RP (1986) Radiation-driven winds of hot luminous stars—improvements of the theory and first results. A&A 164:86–100

    MATH  ADS  Google Scholar 

  • Pauldrach AWA, Kudritzki RP, Puls J, Butler K, Hunsinger J (1994) Radiation-driven winds of hot luminous stars. 12: A first step towards detailed UV-line diagnostics of O-stars. A&A 283:525–560

    ADS  Google Scholar 

  • Paumard T, Genzel R, Maillard JP, Ott T, Morris MR, Eisenhauer F, Abuter R (2004) Census of the Galactic Centre early-type stars using spectro-imagery. In: Chalabaev A, Fukui T, Montmerle T, Tran-Thanh-Van J (eds) “Young Local Universe” Proceedings of XXXIXth Rencontres de Moriond, La Thuile, Aosta Valley, Italie, March 21-28, 2004. Editions Frontieres, Paris, pp 377–388

    Google Scholar 

  • Pittard JM, Dougherty SM (2005) Non-thermal X-ray and gamma-ray emission from the colliding wind binary WR 140. In: Massive stars and high-energy emission in OB associations, pp 57–60

  • Pittard JM, Dougherty SM (2006) Radio, X-ray, and γ-ray emission models of the colliding-wind binary WR140. MNRAS 372:801–826. doi:10.1111/j.1365-2966.2006.10888.x, arXiv:astro-ph/0603787

    ADS  Google Scholar 

  • Pittard JM, Stevens IR (1997) Theoretical X-ray properties of colliding stellar winds in O+O star binaries. MNRAS 292:298–316

    ADS  Google Scholar 

  • Pittard JM, Dougherty SM, Coker RF, O’Connor E, Bolingbroke NJ (2006) Radio emission models of colliding-wind binary systems. Inclusion of IC cooling. A&A 446:1001–1019. doi:10.1051/0004-6361:20053649, arXiv:astro-ph/0510283

    ADS  Google Scholar 

  • Pollock AMT (1987) New evidence at X-ray and COS-B gamma-ray frequencies for non-thermal phenomena in Wolf-Rayet stars. A&A 171:135–139

    ADS  Google Scholar 

  • Quataert E, Loeb A (2005) Nonthermal THz to TeV Emission from Stellar Wind Shocks in the Galactic Center. ApJ 635:L45–L48. doi:10.1086/499126

    ADS  Google Scholar 

  • Rauw G (2004) Non-thermal emission from early-type binaries. In: ASSL Vol. 304: Cosmic Gamma-Ray Sources, pp 105–125

  • Rauw G, Vreux JM, Bohannan B (1999) The interacting early-type binary BD +40 deg4220 (V729 Cyg): modeling the colliding winds region. ApJ 517:416–430. doi:10.1086/307185

    ADS  Google Scholar 

  • Rauw G, Blomme R, Waldron WL, Corcoran MF, Pittard JM, Pollock AMT, Runacres MC, Sana H, Stevens IR, Van Loo S (2002) A multi-wavelength investigation of the non-thermal radio emitting O-star 9 Sgr. A&A 394:993–1008. doi:10.1051/0004-6361:20020926

    ADS  Google Scholar 

  • Rauw G, Vreux JM, Antokhin I, Stevens I, Gosset E, Sana H, Jamar C, Mason K (2003) Monitoring the wind interaction in HD 93403 with XMM-Newton. In: Jansen F (eds) New visions of the X-ray Universe in the XMM-Newton and Chandra Era

  • Rauw G, De Becker M, Linder N (2005a) XMM-Newton observations of the Cyg OB2 association. In: Massive stars and high energy emission in OB associations, JENAM 2005, held in Liège, Belgium, pp 103–106

  • Rauw G, Sana H, Gosset E, De Becker M, Arias J, Morrell N, Eenens P, Stickland D (2005b) On the multiplicity of the non-thermal radio emitters 9 Sgr and HD 168112. In: Massive stars and high energy emission in OB associations, JENAM 2005, held in Liège, Belgium, pp 85–88

  • Reimer A, Pohl M, Reimer O (2006) Nonthermal high-energy emission from colliding winds of massive stars. ApJ 644:1118–1144. doi:10.1086/503598, arXiv:astro-ph/0510701

    ADS  Google Scholar 

  • Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley, New York

    Google Scholar 

  • Sana H et al. (2007), MNRAS, submitted

  • Sana H, Rauw G, Nazé Y, Gosset E, Vreux JM (2006) An XMM-Newton view of the young open cluster NGC 6231 - II. The OB star population. MNRAS 372:661–678. doi:10.1111/j.1365-2966.2006.10847.x, arXiv:astro-ph/0607486

    ADS  Google Scholar 

  • Schmidt GD, Harris HC, Liebert J, Eisenstein DJ, Anderson SF, Brinkmann J, Hall PB, Harvanek M, Hawley S, Kleinman SJ, Knapp GR, Krzesinski J, Lamb DQ, Long D, Munn JA, Neilsen EH, Newman PR, Nitta A, Schlegel DJ, Schneider DP, Silvestri NM, Smith JA, Snedden SA, Szkody P, Vanden Berk D (2003) Magnetic white dwarfs from the sloan digital sky survey: the first data release. ApJ 595:1101–1113. doi:10.1086/377476

    ADS  Google Scholar 

  • Schulz NS, Canizares CR, Huenemoerder D, Lee JC (2000) X-Ray line emission from the Hot Stellar Wind of θ 1 Orionis C. ApJ 545:L135–L139. doi:10.1086/317891, arXiv:astro-ph/0010310

    ADS  Google Scholar 

  • Setia Gunawan DYA, de Bruyn AG, van der Hucht KA, Williams PM (2003) A Westerbork Synthesis Radio Telescope 1400 and 350 MHz continuum survey of the cygnus OB2 association, in search of Hot Massive Stars. ApJs 149:123–156. doi:10.1086/377598

    ADS  Google Scholar 

  • Skinner SL, Zhekov SA, Guedel M, Schmutz W (2007) XMM-Newton X-ray Observations of the Wolf-Rayet Binary System WR 147. MNRAS 378:1191–1198. doi:10.1111/j.1365-2966.2007.11892.x

    Google Scholar 

  • Spruit HC (1999) Differential rotation and magnetic fields in stellar interiors. A&A 349:189–202

    ADS  Google Scholar 

  • Spruit HC (2002) Dynamo action by differential rotation in a stably stratified stellar interior. A&A 381:923–932. doi:10.1051/0004-6361:20011465

    ADS  Google Scholar 

  • Stevens IR, Blondin JM, Pollock AMT (1992) Colliding winds from early-type stars in binary systems. ApJ 386:265–287. doi:10.1086/171013

    ADS  Google Scholar 

  • Tassoul JL (1976) Theory of rotating stars. Princeton University Press, Princeton

    Google Scholar 

  • Torres DF, Domingo-Santamaría E, Romero GE (2004) High-energy gamma rays from stellar associations. ApJ 601:L75–L78. doi:10.1086/381803, astro-ph/0312128

    ADS  Google Scholar 

  • Tout CA, Wickramasinghe DT, Ferrario L (2004) Magnetic fields in white dwarfs and stellar evolution. MNRAS 355:L13–L16. doi:10.1111/j.1365-2966.2004.08482.x

    ADS  Google Scholar 

  • Usov VV, Melrose DB (1992) X-ray emission from single magnetic early-type stars. ApJ 395:575–581. doi:10.1086/171677

    ADS  Google Scholar 

  • Van Loo S (2005) Non-thermal radio emission from single hot stars. PhD thesis, University of Leuven

  • Van Loo S, Runacres M, Blomme R (2006) Can single O stars produce non-thermal radio emission? A&A 452:1011–1019. doi:10.1051/0004-6361:20054266

    ADS  Google Scholar 

  • Vink JS, de Koter A, Lamers HJGLM (2000) New theoretical mass-loss rates of O and B stars. A&A 362:295–309

    ADS  Google Scholar 

  • White RL (1985) Synchrotron emission from chaotic stellar winds. ApJ 289:698–708. doi:10.1086/162933

    ADS  Google Scholar 

  • White RL, Becker RH (1983) The discovery of a hot stellar wind. ApJ 272:L19–L23. doi:10.1086/184109

    ADS  Google Scholar 

  • White RL, Becker RH (1995) An eight-year study of the radio emission from the wolf-rayet binary HD 193793 = WR 140. ApJ 451:352–358. doi:10.1086/176224

    ADS  Google Scholar 

  • White RL, Chen W (1995) Theory and observations of non-thermal phenomena in hot massive binaries (Invited). In: IAU Symposium, pp 438–449

  • Williams PM, van der Hucht KA, Pollock AMT, Florkowski DR, van der Woerd H, Wamsteker WM (1990) Multi-frequency variations of the Wolf-Rayet system HD 193793. I - Infrared, X-ray and radio observations. MNRAS 243:662–684

    ADS  Google Scholar 

  • Williams PM, Dougherty SM, Davis RJ, van der Hucht KA, Bode MF, Setia Gunawan DYA (1997) Radio and infrared structure of the colliding-wind Wolf-Rayet system WR147. MNRAS 289:10–20

    ADS  Google Scholar 

  • Wright AE, Barlow MJ (1975) The radio and infrared spectrum of early-type stars undergoing mass loss. MNRAS 170:41–51

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël De Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Becker, M. Non-thermal emission processes in massive binaries. Astron Astrophys Rev 14, 171–216 (2007). https://doi.org/10.1007/s00159-007-0005-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-007-0005-2

Keywords

Navigation