Skip to main content
Log in

Optimization of elastic spring supports for cantilever beams

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this study,a new approach of optimization algorithm is developed. The optimum distribution of elastic springs on which a cantilever Timoshenko beam is seated and minimization of the shear force on the support of the beam is investigated.The Fourier transform is applied to the beam vibration equation in the time domain and transfer function, independent from the external influence, is used to define the structural response. For all translational modes of the beam, the optimum locations and amounts of the springs are investigated so that the transfer function amplitude of the support shear force is minimized. The stiffness coefficients of the springs placed on the nodes of the beam divided into finite elements are considered as design variables. There is an active constraint on the sum of the spring coefficients taken as design variables and passive constraints on each of them as the upper and lower bounds. Optimality criteria are derived using the Lagrange Multipliers method. The gradient information required for solving the optimization problem is analytically derived. Verification of the new approach optimization algorithm was carried out by comparing the results presented in this paper with those ones from analysis of the model of the beam without springs, with springs with uniform stiffness and with optimal distribution of springs which support a cantilever beam to minimize the tip deflection of the beam found in the literature. The numerical results show that the presented method is effective in finding the optimum spring stiffness coefficients and location of springs for all translational modes.The proposed method can give designers an idea of how to support the cantilever beams under different harmonic vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akesson B, Olhof N (1988) Minimum stiffness of optimally located supports for maximum value of beam eigenfrequencies. J Sound Vib 120(3):457–463

    Google Scholar 

  • Albaracin JM, Zannier L, Gross RO (2004) Some observations in the dynamics of beams with intermediate supports. J Sound Vib 271:475–480

    Google Scholar 

  • Aydin E (2014) Minimum dynamic response of cantilever beams supported by optimal Elastic Springs. Struct Eng Mech 51(3):377–402

    MathSciNet  Google Scholar 

  • Aydin E, Boduroglu MH (2008) Optimal placement of steel diagonal braces for upgrading the seismic capacity of existing structures and its comparison with optimal dampers. J Constr Steel Res 64:72–86

    Google Scholar 

  • Bojczuk D, Mroz Z (1998) On optimal design of supports in beam and frame structures. Struct Optim 16:47–57

    Google Scholar 

  • Bojczuk D, Mroz Z (1998b) Optimal design of trusses with account for topology variation. Mech Struct Mach 26(1):21–40

    Google Scholar 

  • Buhl T (2001) Simultaneous topology optimization of structure and supports. Struct Multidiscip Optim 23:336–346

    Google Scholar 

  • Ching HC, Gene JWH (1992) Eigenvalue sensitivity analysis of planar frames with variable joint and support locations. AIAA J 30(8):2138–3147

    MATH  Google Scholar 

  • Courant R, Hilbert D (1953) Methods of mathematical physics, vol 1. Interscience, New York Chapter 5

    MATH  Google Scholar 

  • Dems K, Turant J (1997) Sensitivity analysis and optimal design of elastic hinges and supports in beam and frame structures. Mech Struct Mach 25(4):417–443

    Google Scholar 

  • Fayyah MM, Razak HA (2012) Condition assessment of elastic bearing supports using vibration data. Constr Build Mater 30:616–628

    Google Scholar 

  • Friswell MI, Wang D (2007) The minimum support stiffness required to raise the fundamental natural frequency of plate structures. J Sound Vib 301:665–677

    Google Scholar 

  • Garstecki A, Mroz Z (1987) Optimal design of supports of elastic structures subject to loads and initial distortions. Mech Struct Mach 15:47–68

    Google Scholar 

  • Gorman DJ (1975) Free vibration analysis of beams and shafts. Wiley, New York Chapter 1

    Google Scholar 

  • Imam MH, Al-Shihri M (1996) Optimum topology of structural supports. Comput Struct 61(1):147–154

    MATH  Google Scholar 

  • Jihang Z, Weighong Z (2006) Maximization of structural natural frequency with optimal support layout. Struct Multidiscip Optim 31:462–469

    Google Scholar 

  • Kong J (2009) Vibration of isotropic and composite plates using computed shape function and its application to elastic support optimization. J Sound Vib 326:671–686

    Google Scholar 

  • Kukla S (1991) The green function method in frequency analysis of a beam with intermediate elastic supports. J Sound Vib 149:154–159

    Google Scholar 

  • Lin HY (2010) An exact solution for free vibrations of a non-uniform beam carrying multiple elastic supported rigid bars. Struct Eng Mech 34(4):399–416

    Google Scholar 

  • Liu ZS, Hu HC, Wang DJ (1996) New method for deriving eigenvalue rate with respect to support locations. AIAA J 34:864–866

    Google Scholar 

  • Marcelin JL (2001) Genetic search applied to selecting support position in machining of mechanical parts. Int J Adv Manuf Technol 17:344–347

    Google Scholar 

  • Maurizi MJ, Rossit DVB (1987) Free vibration of a clamped-clamped beam with an intermediate elastic support. J Sound Vib 119:173–176

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  • Mroz Z, Haftka RT (1994) Design sensitivity of non-linear structures in regular and critical states. Int J Solids Struct 31:2071–2098

    MathSciNet  MATH  Google Scholar 

  • Mroz Z, Lekszycki T (1982) Optimal support reaction in elastic frame structures. Comput Struct 14:179–185

    MATH  Google Scholar 

  • Mroz Z, Rozvany GIN (1975) Optimal design of structures with variable support positions. J Opt Theory Appl 15:85–101

    MATH  Google Scholar 

  • Olhoff N, Akesson B (1991) Minimum stiffness of optimally located supports for maximum value of column buckling loads. Struct Multidiscip Optim 3:163–175

    Google Scholar 

  • Olhoff N, Taylor JE (1998) Designing continuous columns for minimum total cost of material and interior supports. J Struct Mech 6(4):367–382

    Google Scholar 

  • Prager W, Rozvany GIN (1975) “Plastic design of beams; optimal locations of supports and steps in yield moment”, Int. J Mech Sci 17:627–631

    MATH  Google Scholar 

  • Przemieniecki JS (1968) Theory of matrix structural analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Rao CK (1989) Frequency analysis of clamped-clamped uniform beams with intermediate elastic support. J Sound Vib 133:502–509

    Google Scholar 

  • Rozvany GIN (1975) Analytical treatment of some extended problems in structural optimization. J Struct Mech 1:359–385

    Google Scholar 

  • Saka MP, Hasançebi O, Geem ZW (2015) “Metaheuristics in structural optimization and discussions on harmony search algorithm”, swarm. Evol Comput 28:88–97

    Google Scholar 

  • Sinha JK, Frishwell MI (2001) The location of spring supports from measured vibration data. J Sound Vib 244(1):137–153

    Google Scholar 

  • Son JH, Kwak BM (1993) Optimization of boundary conditions for maximum fundamentalfrequency of vibrating structures. AIAA J 31(12):2351–2357

    MATH  Google Scholar 

  • Sonmez M (2010) Discrete optimum design of truss structures using artificial bee colony algorithm. Struct Multidiscip Optim 43-1:85–97

    Google Scholar 

  • Sonmez M (2018) Performance comparison of Metaheuristic algorithms for the optimal Design of Space Trusses. Arab J Sci Eng 43:5265–52818

    Google Scholar 

  • Szelag D, Mroz Z (1978) Optimal design of elastic beams with unspecified support positions. ZAMM 58:501–510

    MATH  Google Scholar 

  • Takewaki I (1998) Optimal damper positioning in beams for minimum dynamic compliance. Comput Methods Appl Mech Eng 156:363–373

    MATH  Google Scholar 

  • Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New York Chapter 2

    Google Scholar 

  • Wang BP (1993) Eigenvalue sensitivity with respect to location of internal stiffness and mass attachment. AIAA J 31:791–794

    Google Scholar 

  • Wang CY (2003) Minimum stiffness of an internal elastic support to maximize the fundamental frequency of a vibrating beam. J Sound Vib 259(1):229–232

    MATH  Google Scholar 

  • Wang D (2004) Optimization of support positions to minimize the maximal deflection of structures. Int J Solids Struct 41:7445–7458

    MATH  Google Scholar 

  • Wang D (2006) “Optimal design of structural support positions for minimizing maximal bending moment”, finite Elem. Anal Des 43:95–102

    Google Scholar 

  • Wang BP, Chen JL (1996) Application of genetic algorithm for the support location optimization of beams. Comput Struct 58(4):597–800

    Google Scholar 

  • Wang D, Jiang JS, Zhang WH (2004) Optimization of support positions to maximize the fundamental frequency of structures. Int J Numer Methods Eng 61:1584–1602

    MATH  Google Scholar 

  • Wang D, Frishwell MI, Lei Y (2006) Maximizing the natural frequency of a beam with an intermediate elastic support. J Sound Vib 291:1229–1238

    Google Scholar 

  • Wang D, Yang ZC, Yu ZG (2010) Minimum stiffness location of point support for control of fundamental natural frequency of rectangular plate by Rayleigh-Ritz method. J Sound Vib 329:2792–2808

    Google Scholar 

  • Won KM, Park YS (1998) Optimal support positions for a structure to maximize its fundamental natural frequency. J Sound Vib 213(5):801–812

    Google Scholar 

  • Zhu JH, Zhang WH (2010) “Integrated layout design of supports and structures”, computer methods Appl. Mech Eng 199:557–569

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Dutkiewicz.

Ethics declarations

Conflict of interest

Authors of the paper state that there is no conflict of interest.

Additional information

Responsible Editor: Ji-Hong Zhu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The new approach of optimization algorithm is developed.

• New sensitivity-based model updating with simulated stiffness of springs with the purpose of minimization of the support shear force in Timoshenko beam.

• Application of the Lagrange Multipliers Method for optimization problem. Optimal stiffness distribution.

• Wide range of analysis of the behaviour of the beam in time and frequency domain. Development of sensitivity-based model for first sixth modes.

• Analysis of variations of first order sensitivities and transfer functions according to the step number.

• Research of influence of spring support on changes of natural frequencies of the beam for different mode control.

• Practical tool for optimal design of beam and other structures under dynamical excitation, especially for the engineering purposes.

• Proposed methodology is compared to solutions found in literature and presented model is verified with results from other models from literature.

• The problem of the beam was also analysed with the use of Gray Wolf Optimization (GWO) algorithm to compare the results of the gradient-based method. The results of the proposed gradient based method are proved to be accurate by comparing the results with a GWO method.

APPENDIX

APPENDIX

1.1 CANTILEVER BEAM MODEL WITH TWO ELEMENTS

For a better understanding of the problem, let us do a numerical analysis and show a step on a cantilever beam model with 2 elements and 4 degrees of freedom as shown in Fig. 15. The cantilever beam (length is 6 m) is modelled as a Timoshenko beam by dividing it into 3 m finite elements and assuming vertical displacements and rotations at each node. Two vertical and rotational displacements at each node are considered and a total of 4 degrees of freedom are defined in the system. The shear modulus is G= 7,94 1010 N/m2, the correction factor κ=5/6, the cross-sectional area A=0,05 m2, the moment of inertia I= 2,08 10−4 m4, density of material ρ= 7,8 103 kg/m3, the modulus of elasticity E= 2,06 1011 N/m2. A mass of 100 kg is also added to the end of the beam. Structural damping matrix is selected as mass proportional and structural damping ratio is assumed as 0,02. The total stiffness is assumed to be \( \overline{K}=9x{10}^6N/m \) and the amount of additional stiffness in each step is calculated as \( \Delta K=\frac{9x{10}^6}{300}=30000\ N/m \) where design step number (d) is selected as 300.

Using element stiffness and mass matrices, the global stiffness and mass matrices of the 4 degree of freedom beam are found as follows

$$ K=\left[\begin{array}{ccc}3,74406\kern0.5em 0,00000& -1,87203& 2,80804\\ {}\begin{array}{cc}0,00000& 11,2807\end{array}& -2,80804& 2,78380\\ {}\begin{array}{cc}\begin{array}{c}-1,87203\\ {}2,80804\end{array}& \begin{array}{c}-2,80804\\ {}2,78380\end{array}\end{array}& \begin{array}{c}1,87203\\ {}-2,80804\end{array}& \begin{array}{c}-2,80804\\ {}5,64033\end{array}\end{array}\right]\ast {10}^7 $$
(43)
$$ M=\left[\begin{array}{ccc}\mathrm{868,698}\kern0.5em \mathrm{0,000}& \mathrm{150,651}& -\mathrm{109,277}\\ {}\begin{array}{cc}\mathrm{0,000}& \kern0.5em \mathrm{201,01}\end{array}& \mathrm{109,277}& -75,8064\\ {}\begin{array}{cc}\begin{array}{c}\mathrm{150,651}\\ {}-\mathrm{109,277}\end{array}& \begin{array}{c}\mathrm{109,277}\\ {}-\mathrm{75,806}\end{array}\end{array}& \begin{array}{c}\mathrm{534,349}\\ {}-\mathrm{183,223}\end{array}& \begin{array}{c}-\mathrm{183,223}\\ {}\mathrm{100,505}\end{array}\end{array}\right] $$
(44)

In the first step, the system’s natural circular frequencies are calculated as ωi ={29,8,881,189,4,946,366,731,694,69}rad/s from the eigenvalue-eigenvector analysis. The first eigenvector normalized to the tip degree of freedom of the system is found as ∅1 ={0,3,357,330,192,635 100,000 0,232,286}. The damping matrix of the beam model can be calculated in proportion to the mass as follows.

$$ C=2\upzeta {\upomega}_1M=2\ast 0,02\ast 29,8881\ast \left[\begin{array}{ccc}\mathrm{868,698}\kern0.5em \mathrm{0,000}& \mathrm{150,651}& -\mathrm{109,277}\\ {}\begin{array}{cc}\mathrm{0,000}& \kern0.5em \mathrm{201,01}\end{array}& \mathrm{109,277}& -75,8064\\ {}\begin{array}{cc}\begin{array}{c}\mathrm{150,651}\\ {}-\mathrm{109,277}\end{array}& \begin{array}{c}\mathrm{109,277}\\ {}-\mathrm{75,806}\end{array}\end{array}& \begin{array}{c}\mathrm{534,349}\\ {}-\mathrm{183,223}\end{array}& \begin{array}{c}-\mathrm{183,223}\\ {}\mathrm{100,505}\end{array}\end{array}\right]=\left[\begin{array}{ccc}\begin{array}{cc}1590,92& \mathrm{0,000}\end{array}& \mathrm{275,901}& -\mathrm{200,13}\\ {}\begin{array}{cc}\mathrm{0,000}& \kern0.5em \mathrm{368,127}\end{array}& \mathrm{200,130}& -\mathrm{138,831}\\ {}\begin{array}{cc}\begin{array}{c}\mathrm{275,901}\\ {}-\mathrm{200,13}\end{array}& \begin{array}{c}\mathrm{200,13}\\ {}-\mathrm{138,831}\end{array}\end{array}& \begin{array}{c}\mathrm{978,601}\\ {}-\mathrm{335,552}\end{array}& \begin{array}{c}-\mathrm{335,552}\\ {}\mathrm{184,063}\end{array}\end{array}\right] $$
(45)

The stiffness matrix of the springs added and its partial derivations with respect to k1 and k2 are given below

$$ {\boldsymbol{K}}_{\boldsymbol{S}}=\left[\begin{array}{ccc}{k}_1\kern0.5em 0& 0& 0\\ {}\begin{array}{cc}0& \kern0.5em 0\end{array}& 0& 0\\ {}\begin{array}{cc}\begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}& \begin{array}{c}{k}_2\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}\right]\frac{\partial {\boldsymbol{K}}_{\boldsymbol{s}}}{\partial {k}_1}=\left[\begin{array}{ccc}\begin{array}{cc}1& 0\end{array}& 0& 0\\ {}\begin{array}{cc}0& 0\end{array}& 0& 0\\ {}\begin{array}{cc}\begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}& \begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}\right]\frac{\partial {\boldsymbol{K}}_{\boldsymbol{s}}}{\partial {k}_2}=\left[\begin{array}{ccc}\begin{array}{cc}0& 0\end{array}& 0& 0\\ {}\begin{array}{cc}0& 0\end{array}& 0& 0\\ {}\begin{array}{cc}\begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}& \begin{array}{c}1\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}\right] $$
(46)

The calculation of matrix A given in Eq. (9) is as follows

$$ \boldsymbol{A}=\left(\boldsymbol{K}+{\boldsymbol{K}}_{\boldsymbol{s}}\right)+i{\omega}_1\boldsymbol{C}-{\omega}_1^2\boldsymbol{M}=\left[\begin{array}{ccc}3,74406\kern0.5em 0,00000& -1,87203& 2,80804\\ {}\begin{array}{cc}0,00000& 11,2807\end{array}& -2,80804& 2,78380\\ {}\begin{array}{cc}\begin{array}{c}-1,87203\\ {}2,80804\end{array}& \begin{array}{c}-2,80804\\ {}2,78380\end{array}\end{array}& \begin{array}{c}1,87203\\ {}-2,80804\end{array}& \begin{array}{c}-2,80804\\ {}5,64033\end{array}\end{array}\right]\ast {10}^7+\left[\begin{array}{ccc}\begin{array}{cc}{k}_1& 0\end{array}& 0& 0\\ {}\begin{array}{cc}0& \kern0.5em 0\end{array}& 0& 0\\ {}\begin{array}{cc}\begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}& \begin{array}{c}{k}_2\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}\right]+i\ast 29,8881\ast \left[\begin{array}{ccc}\begin{array}{cc}1590,92& \mathrm{0,000}\end{array}& \mathrm{275,901}& -\mathrm{200,13}\\ {}\begin{array}{cc}\mathrm{0,000}& \kern0.5em \mathrm{368,127}\end{array}& \mathrm{200,13}& -\mathrm{138,831}\\ {}\begin{array}{cc}\begin{array}{c}\mathrm{275,901}\\ {}-\mathrm{200,13}\end{array}& \begin{array}{c}\mathrm{200,13}\\ {}-\mathrm{138,831}\end{array}\end{array}& \begin{array}{c}\mathrm{978,601}\\ {}-\mathrm{335,552}\end{array}& \begin{array}{c}-\mathrm{335,552}\\ {}\mathrm{184,063}\end{array}\end{array}\right]-29,{8881}^2\ast \left[\begin{array}{ccc}\begin{array}{cc}\mathrm{868,698}& \mathrm{0,000}\end{array}& \mathrm{150,651}& -\mathrm{109,277}\\ {}\begin{array}{cc}\mathrm{0,000}& \kern0.5em \mathrm{201,01}\end{array}& \mathrm{109,277}& -75,8064\\ {}\begin{array}{cc}\begin{array}{c}\mathrm{150,651}\\ {}-\mathrm{109,277}\end{array}& \begin{array}{c}\mathrm{109,277}\\ {}-\mathrm{75,806}\end{array}\end{array}& \begin{array}{c}\mathrm{534,349}\\ {}-\mathrm{183,223}\end{array}& \begin{array}{c}-\mathrm{183,223}\\ {}\mathrm{100,505}\end{array}\end{array}\right]=\left[\begin{array}{ccc}\begin{array}{cc}3,66646\ast {10}^7+31040,3\ast i& 0,0000000+0,0000000\ast i\end{array}& -1,88549\ast {10}^7+5383,06\ast i& 2,8178\ast {10}^7-3904,7\ast i\\ {}\begin{array}{cc}0,0000000+0,000000\ast i\kern1.25em & \kern0.5em 1,12627\ast {10}^8+7182,47\ast i\end{array}& -2,8178\ast {10}^7+3904,7\ast i& 2,79057\ast {10}^7-2708,71\ast i\\ {}\begin{array}{cc}\begin{array}{c}-1,88549\ast {10}^7+5383,06\ast i\\ {}2,8178\ast {10}^7-3904,7\ast i\end{array}& \begin{array}{c}-2,8178\ast {10}^7+3904,7\ast i\\ {}2,79057\ast {10}^7-2708,71\ast i\end{array}\end{array}& \begin{array}{c}1,82429\ast {10}^7+19093,3\ast i\\ {}-2,79167\ast {10}^7-6546,9\ast i\end{array}& \begin{array}{c}-2,79167\ast {10}^7-6546,9\ast i\\ {}5,63135\ast {10}^7+3591,24\ast i\end{array}\end{array}\right] $$
(47)

Initial values of design variables (k1and k2) are assumed to be zero, The modal mass for 1st mode and the partial derivative of first eigenvalue with respect to k1 and k2 are obtained as

$$ {\overline{m}}_1={\boldsymbol{\varPhi}}_{\mathbf{1}}^{\boldsymbol{T}}\boldsymbol{M}{\boldsymbol{\varPhi}}_{\mathbf{1}}=\left\{\begin{array}{c}0,335733\ \\ {}0,192635\\ {}\ 1,00000\\ {}\ 0,232286\end{array}\right\}\left[\begin{array}{ccc}\mathrm{868,698}\kern0.5em \mathrm{0,000}& \mathrm{150,651}& -\mathrm{109,277}\\ {}\begin{array}{cc}\mathrm{0,000}& \kern0.5em \mathrm{201,01}\end{array}& \mathrm{109,277}& -75,8064\\ {}\begin{array}{cc}\begin{array}{c}\mathrm{150,651}\\ {}-\mathrm{109,277}\end{array}& \begin{array}{c}\mathrm{109,277}\\ {}-\mathrm{75,806}\end{array}\end{array}& \begin{array}{c}\mathrm{534,349}\\ {}-\mathrm{183,223}\end{array}& \begin{array}{c}-\mathrm{183,223}\\ {}\mathrm{100,505}\end{array}\end{array}\right]\left\{0,335733\kern0.75em 0,192635\kern1em 1,00000\kern1em 0,232286\right\}=\mathrm{679,458} $$
(48)
$$ \frac{\partial {\varOmega}_1}{\partial {k}_1}=\frac{1}{{\overline{m}}_1}\frac{\partial {\overline{k}}_1}{\partial {k}_1}=\frac{1}{\mathrm{679,458}}\left\{\begin{array}{c}0,335733\ \\ {}0,192635\\ {}\ 1,00000\\ {}\ 0,232286\end{array}\right\}\left[\begin{array}{ccc}1\kern0.5em 0& 0& 0\\ {}\begin{array}{cc}0& 0\end{array}& 0& 0\\ {}\begin{array}{cc}\begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}& \begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}\right]\left\{0,335733\kern1em 0,192635\kern1em 1,00000\kern0.75em 0,232286\right\}=0,000165892 $$
(49)
$$ \frac{\partial {\varOmega}_1}{\partial {k}_2}=\frac{1}{{\overline{m}}_1}\frac{\partial {\overline{k}}_1}{\partial {k}_2}=\frac{1}{\mathrm{679,458}}\left\{\begin{array}{c}0,335733\ \\ {}0,192635\\ {}\ 1,00000\\ {}\ 0,232286\end{array}\right\}\left[\begin{array}{ccc}0\kern0.5em 0& 0& 0\\ {}\begin{array}{cc}0& 0\end{array}& 0& 0\\ {}\begin{array}{cc}\begin{array}{c}0\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}& \begin{array}{c}1\\ {}0\end{array}& \begin{array}{c}0\\ {}0\end{array}\end{array}\right]\left\{0,335733\kern1em 0,192635\kern0.75em 1,00000\kern0.75em 0,232286\right\}=0,00147176 $$
(50)

The transfer function vector is calculated as

$$ \overset{\sim }{\boldsymbol{U}}\left({\omega}_1\right)=-{\boldsymbol{A}}^{-1}\boldsymbol{Mr}=\left\{\begin{array}{c}-0,0000142032+0,0135566i\\ {}0,00000110433+0,00777842i\\ {}\begin{array}{c}0,0000155147+0,040379i\\ {}0,0000140347+0,00937945i\end{array}\end{array}\right\} $$
(51)

The transfer function vector of elastic forces are obtained as follows

$$ \boldsymbol{F}\left({\omega}_1\right)=\left(\boldsymbol{K}+{\boldsymbol{K}}_{\boldsymbol{s}}\right)\overset{\sim }{\boldsymbol{U}}\left({\omega}_1\right)=\left\{\begin{array}{c}-\mathrm{428,114}+15038,9i\\ {}79,6148+4703,22i\\ {}\begin{array}{c}\mathrm{131,217}+20322,7i\\ {}-12,1448-7616,93i\end{array}\end{array}\right\} $$
(52)

where the elements of Ks are zero in the first step. The absolute value of the F(ωn) are given as

$$ \left|\boldsymbol{F}\left({\omega}_1\right)\right|=\left\{\begin{array}{c}15045,00\\ {}4703,89\\ {}\begin{array}{c}20323,10\\ {}7616,94\end{array}\end{array}\right\} $$
(53)

The transfer function amplitude of the support shear force is found as

$$ V\left({\omega}_n\right)=\sum \limits_{s=1}^2\mathit{\operatorname{sign}}\left({\varnothing}_{is}\right)\left|{F}_s\left({\omega}_1\right)\right|=\mathit{\operatorname{sign}}\left({\varnothing}_{11}\right)\left|{F}_1\left({\omega}_1\right)\right|+\mathit{\operatorname{sign}}\left({\varnothing}_{13}\right)\left|{F}_2\left({\omega}_1\right)\right|=\mathit{\operatorname{sign}}\left(0,335733\right)15045,00+\mathit{\operatorname{sign}}\left(1,00000\right)20323,10=\left(+\right)15045,00+\left(+\right)20323,10=35362,8 $$
(54)

where s is defined as the number of degree of freedom corresponding to the translational modes. The first order sensitivity with respect to the k1 and k2are given as

$$ \frac{\partial \boldsymbol{F}}{\partial {k}_1}=\left(\frac{\partial {\boldsymbol{K}}_{\boldsymbol{s}}}{\partial {k}_1}-{\boldsymbol{K}}_{\boldsymbol{s}}{\boldsymbol{A}}^{-\mathbf{1}}\frac{\partial \boldsymbol{A}}{\partial {k}_1}\right)\overset{\sim }{\boldsymbol{U}}=\left\{\begin{array}{c}-1,50914\ast {10}^{-5}-3,26491\ast {10}^{-4}i\\ {}-5,72376\ast {10}^{-8}-4,40133\ast {10}^{-6}i\\ {}\begin{array}{c}-1,70528\ast {10}^{-7}-\mathrm{1,745}\ast {10}^{-5}i\\ {}1,54417\ast {10}^{-6}+3,74729\ast {10}^{-5}i\end{array}\end{array}\right\} $$
(55)
$$ \frac{\partial \boldsymbol{F}}{\partial {k}_2}=\left(\frac{\partial {\boldsymbol{K}}_{\boldsymbol{s}}}{\partial {k}_2}-{\boldsymbol{K}}_{\boldsymbol{s}}{\boldsymbol{A}}^{-\mathbf{1}}\frac{\partial \boldsymbol{A}}{\partial {k}_2}\right)\overset{\sim }{\boldsymbol{U}}=\left\{\begin{array}{c}2,67383\ast {10}^{-5}+1,06866\ast {10}^{-3}i\\ {}3,53174\ast {10}^{-6}+5,56696\ast {10}^{-5}i\\ {}\begin{array}{c}7,5875\ast {10}^{-6}+5,10216\ast {10}^{-5}i\\ {}-5,71166\ast {10}^{-6}-1,40692\ast {10}^{-4}i\end{array}\end{array}\right\} $$
(56)

The absolute values of first order sensitivities of the elastic force in two nodes are calculated as

$$ \frac{\partial \left|{F}_1\right|}{\partial {k}_1}=\frac{1}{\left|{F}_1\right|}\left\{\mathit{\operatorname{Re}}\left[{F}_1\right]\left(\mathit{\operatorname{Re}}\left[\frac{\partial {F}_1}{\partial {k}_1}\right]\right)+\mathit{\operatorname{Im}}\left[{F}_1\right]\left(\mathit{\operatorname{Im}}\left[\frac{\partial {F}_1}{\partial {k}_1}\right]\right)\right\}=\frac{1}{15045,00}\left\{\left(-\mathrm{428,114}\right)\ast \left(-1,50914\ast {10}^{-5}\right)+\left(15038,9\right)\ast \left(-3,26491\ast {10}^{-4}\right)\right\}=-0,000325929 $$
(57)
$$ \frac{\partial \left|{F}_1\right|}{\partial {k}_2}=\frac{1}{\left|{F}_1\right|}\left\{\mathit{\operatorname{Re}}\left[{F}_1\right]\left(\mathit{\operatorname{Re}}\left[\frac{\partial {F}_1}{\partial {k}_2}\right]\right)+\mathit{\operatorname{Im}}\left[{F}_1\right]\left(\mathit{\operatorname{Im}}\left[\frac{\partial {F}_1}{\partial {k}_2}\right]\right)\right\}=\frac{1}{15045,00}\left\{\left(-\mathrm{428,114}\right)\ast \left(2,67383\ast {10}^{-5}\right)+\left(15038,9\right)\ast \left(1,06866\ast {10}^{-3}\right)\right\}=0,00106747 $$
(58)
$$ \frac{\partial \left|{F}_2\right|}{\partial {k}_1}=\frac{1}{\left|{F}_2\right|}\left\{\mathit{\operatorname{Re}}\left[{F}_2\right]\left(\mathit{\operatorname{Re}}\left[\frac{\partial {F}_2}{\partial {k}_1}\right]\right)+\mathit{\operatorname{Im}}\left[{F}_2\right]\left(\mathit{\operatorname{Im}}\left[\frac{\partial {F}_2}{\partial {k}_1}\right]\right)\right\}=\frac{1}{20323,10}\left\{\left(\mathrm{131,217}\right)\ast \left(-1,70528\ast {10}^{-7}\right)+\left(20322,7\right)\ast \left(-\mathrm{1,745}\ast {10}^{-5}\right)\right\}=-0,0000174508 $$
(59)
$$ \frac{\partial \left|{F}_2\right|}{\partial {k}_2}=\frac{1}{\left|{F}_2\right|}\left\{\mathit{\operatorname{Re}}\left[{F}_2\right]\left(\mathit{\operatorname{Re}}\left[\frac{\partial {F}_2}{\partial {k}_2}\right]\right)+\mathit{\operatorname{Im}}\left[{F}_2\right]\left(\mathit{\operatorname{Im}}\left[\frac{\partial {F}_2}{\partial {k}_2}\right]\right)\right\}=\frac{1}{20323,10}\left\{\left(\mathrm{131,217}\right)\ast \left(7,5875\ast {10}^{-6}\right)+\left(20322,7\right)\ast \left(5,10216\ast {10}^{-5}\right)\right\}=0,0000510695 $$
(60)

The first order sensitivities of transfer function amplitude of the support force with respect to design variables (k1and k2) are obtained as follows

$$ \frac{\partial V}{\partial {k}_1}=\mathit{\operatorname{sign}}\left({\varnothing}_{11}\right)\left(-0,000325929\right)+\mathit{\operatorname{sign}}\left({\varnothing}_{13}\right)\left(-0,0000174508\right)=-0,00034338 $$
(61)
$$ \frac{\partial V}{\partial {k}_2}=\mathit{\operatorname{sign}}\left({\varnothing}_{11}\right)\left(0,00106747\right)+\mathit{\operatorname{sign}}\left({\varnothing}_{13}\right)\left(0,0000510695\right)=0,00111854 $$
(62)
$$ \frac{\partial V}{\partial k}=\left\{-0,00034338\kern1.25em 0,00111854\right\} $$
(63)
$$ \mathit{\operatorname{Max}}\left(\frac{\partial V}{\partial k}\right)-\frac{\partial V}{\partial {k}_1}=0,00111854-0,00034338\ne 0 $$
(64)
$$ \mathit{\operatorname{Max}}\left(\frac{\partial V}{\partial k}\right)-\frac{\partial V}{\partial {k}_2}=0,00111854-0,00111854=0 $$
(65)

In Eq. (65), there is a z=2 index which satisfies the optimality condition. All spring stiffness coefficients are updated as follows

$$ {k}_1=0\kern1.25em {k}_2=0+\Delta K=30000\ N/m $$
(66)

According to this value, the cycle continues until the total stiffness coefficient (\( \overline{K} \)) is reached in the end of step 300. In each step, all calculations are updated such as eigenvalue, eigenvectors, objective function and sensitivities. Some basic calculations in each step are summarized briefly where the objective function is minimized.

Fig. 15
figure 15

Cantilever beam with 2 elements

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, E., Dutkiewicz, M., Öztürk, B. et al. Optimization of elastic spring supports for cantilever beams. Struct Multidisc Optim 62, 55–81 (2020). https://doi.org/10.1007/s00158-019-02469-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02469-3

Keywords

Navigation