Skip to main content
Log in

Toward design optimization of a Pelton turbine runner

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The objective of the present paper is to propose a strategy to optimize the performance of a Pelton runner based on a parametric model of the bucket geometry, massive particle based numerical simulations and advanced optimization strategies to reduce the dimension of the design problem. The parametric model of the Pelton bucket is based on four bicubic Bézier patches and the number of free parameters is reduced to 21. The numerical simulations are performed using the finite volume particle method, which benefits from a conservative, consistent, arbitrary Lagrangian Eulerian formulation. The resulting design problem is of High-dimension with Expensive Black-box (HEB) performance function. In order to tackle the HEB problem, a preliminary exploration is performed using 2’000 sampled runners geometry provided by a Halton sequence. A cubic multivariate adaptive regression spline surrogate model is built according to the simulated performance of these runners. Moreover, an original clustering approach is proposed to decompose the design problem into four sub-problems of smaller dimensions that can be addressed with more conventional optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anagnostopoulos J S, Papantonis D E (2012) A fast lagrangian simulation method for flow analysis and runner design in pelton turbines. J Hydrodyn Ser B 24(6):930–941. doi:10.1016/S1001-6058(11)60321-1

    Article  Google Scholar 

  • Andolfatto L (2013) Assistance à l’élaboration de gammes d’assemblage innovantes de structures composites. PhD thesis, École Normale Supérieure de Cachan, France

  • Ayachit U (2015) The ParaView guide: a parallel visualization application. Kitware

  • Caniou Y (2012) Global sensitivity analysis for nested and multiscale modelling. PhD thesis, Blaise Pascal University-Clermont II, France

  • Falcidieno B, Giannini F, Léon J C, Pernot J P (2014) Processing free form objects within a product development process framework. In: Michopoulos J, Rosen D, Paredis C, Vance J (eds) Advances in computers and information in engineering research, ASME. doi:10.1115/1.860328_ch13, (to appear in print)

  • Friedman J H (1991) Multivariate adaptive regression splines. Annals Stat 19(1):1–67. http://www.jstor.org/stable/2241837

    Article  MathSciNet  MATH  Google Scholar 

  • Halton J H (1964) Algorithm 247: radical-inverse quasi-random point sequence. Commun ACM 7(12):701–702. doi:10.1145/355588.365104

    Article  Google Scholar 

  • Hietel D, Steiner K, Struckmeier J (2000) A finite-volume particle method for compressible flows. Math Models Methods Appl Sci 10:1363–1382. doi:10.1142/S0218202500000604

    Article  MathSciNet  MATH  Google Scholar 

  • Iooss B, Boussouf L, Marrel A, Feuillard V (2009) Numerical study of the metamodel validation process. In: First international conference on advances in system simulation, 2009. SIMUL ’09., pp 100–105. doi:10.1109/SIMUL.2009.8

  • Jahanbakhsh E, Pacot O, Avellan F (2012) Implementation of a parallel SPH-FPM solver for fluid flows. Zetta – Numer Simul Sci Technol 1:16–20

    Google Scholar 

  • Jahanbakhsh E (2014) Simulation of silt erosion using particle-based methods. PhD thesis, École polytechnique fédérale de Lausanne, no. 6284. doi:10.5075/epfl-thesis-6284

  • Jahanbakhsh E, Vessaz C, Avellan F (2014) Finite volume particle method for 3-D elasto-plastic solid simulation. In: 9th SPHERIC International Workshop. Paris, pp 356–362

  • Jahanbakhsh E, Vessaz C, Maertens A, Avellan F (2016) Development of a finite volume particle method for 3-D fluid flow simulations. Comput Methods Appl Mech Eng 298:80–107. doi:10.1016/j.cma.2015.09.013

    Article  MathSciNet  Google Scholar 

  • Joṡt D, MeŻnar P, Lipej A (2010) Numerical prediction of a Pelton turbine efficiency. IOP Confe Ser Earth Environ Sci 12(1). doi:10.1088/1755-1315/12/1/012080

  • Liou M S (1996) A sequel to AUSM: AUSM+. J Comput Phys 129:364–382. doi:10.1006/jcph.1996.0256

    Article  MathSciNet  MATH  Google Scholar 

  • Mack R, Moser W (2002) Numerical investigation of the flow in a Pelton turbine. In: Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, pp 373– 378

  • Mack R, Gola B, Smertnig M, Wittwer B, Meusburger P (2014) Modernization of vertical pelton turbines with the help of cfd and model testing. In: IOP Conference series: earth and environmental science, vol 22. IOP Publishing, p 012002

  • Marongiu J C, Leboeuf F, Caro J, Parkinson E (2010) Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method. J Hydraul Res 48:40–49. doi:10.1080/00221686.2010.9641244

    Article  Google Scholar 

  • Michálková K, Bastl B (2015) Imposing angle boundary conditions on B-spline/NURBS surfaces. Comput-Aided Des 62(0):1–9. doi:10.1016/j.cad.2014.10.002

    Article  MathSciNet  Google Scholar 

  • Monaghan J J (2005) Smoothed particle hydrodynamics. Reports Progress Phys 68(8):1703–1759. doi:10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  • Nestor R M, Basa M, Lastiwka M, Quinlan N J (2009) Extension of the finite volume particle method to viscous flow. J Comput Phys 228(5):1733–1749. doi:10.1016/j.jcp.2008.11.003

    Article  MathSciNet  MATH  Google Scholar 

  • Pelton LA (1880) Water-wheel. http://www.google.com/patents/US233692, US Patent 233692

  • Quinlan N J, Nestor R M (2011) Fast exact evaluation of particle interaction vectors in the finite volume particle method. Meshfree Methods Partial Diff Equas V:219–234. doi:10.1007/978-3-642-16229-9_14

  • Shan S, Wang G (2010) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscip Optim 41(2):219–241. doi:10.1007/s00158-009-0420-2

    Article  MathSciNet  MATH  Google Scholar 

  • Sobieszczanski-Sobieski J, Haftka R (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Optim 14(1):1–23. doi:10.1007/BF01197554

    Article  Google Scholar 

  • Solemslie B, Dahlhaug O (2012) A reference Pelton turbine design. In: IOP conference series: earth and environmental science, vol 15. IOP Publishing, p 032005, DOI 10.1088/1755-1315/15/3/032005

  • Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Safety 93 (7):964–979. doi:10.1016/j.ress.2007.04.002

    Article  Google Scholar 

  • Vessaz C, Tournier C, Münch C, Avellan F (2013) Design optimization of a 2D blade by means of milling tool path. CIRP J Manuf Sci Technol 6:157–166 . doi:10.1016/j.cirpj.2013.05.002

    Article  Google Scholar 

  • Vessaz C (2015) Finite particle flow simulation of free jet deviation by rotating Pelton buckets. PhD thesis, École polytechnique fédérale de Lausanne, no 6470. doi:10.5075/epfl-thesis-6470

  • Vessaz C, Jahanbakhsh E, Avellan F (2015) Flow simulation of jet deviation by rotating pelton buckets using finite volume particle method. J Fluids Eng 137(7):074,501–074,501. doi:10.1115/1.4029839

    Article  Google Scholar 

  • Xiao Y X, Han F Q, Zhou J L, Kubota T (2007) Numerical prediction of dynamic performance of Pelton turbine. J Hydrodyn Serie B 19:356–364. doi:10.1016/S1001-6058(07)60070-5

    Article  Google Scholar 

  • Xiao Y X, Cui T, Wang Z W, Yan Z G (2012) Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine. IOP Conf Series: Earth Environ Sci 15(5). doi:10.1088/1755-1315/15/5/052033

  • żidonis A, Aggidis G A (2015) State of the art in numerical modelling of Pelton turbines. Renew Sustain Energy Rev 45:135–144. doi:10.1016/j.rser.2015.01.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Andolfatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vessaz, C., Andolfatto, L., Avellan, F. et al. Toward design optimization of a Pelton turbine runner. Struct Multidisc Optim 55, 37–51 (2017). https://doi.org/10.1007/s00158-016-1465-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1465-7

Keywords

Navigation