Skip to main content
Log in

Coupled aerostructural topology optimization using a level set method for 3D aircraft wings

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The purpose of this work is to develop a level set topology optimization method for an unstructured three-dimensional mesh and apply it to wing box design for coupled aerostructural considerations. The paper develops fast marching and upwind schemes suitable for unstructured meshes, which make the level set method robust and efficient. The method is applied to optimize a representative wing box internal structure for the NASA Common Research Model. The objective is to minimize the total compliance of the wing box. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box. Optimum solutions for several aerodynamic and body force load cases, as well as a ground load case, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A :

Sensitivity factor for angle of attack

a :

Vector of Doublet Lattice Method (DLM) box areas

b :

Vector defining influence of wing deformed shape on lift

C :

Compliance of the structure

c p :

Pressure coefficient vector

D :

Aerodynamic influence coefficient matrix

E :

Material property tensor

e :

Number of elements attached to a node

f a :

Aerodynamic load vector

f g :

Body force load vector

f t :

Total load vector

g :

Acceleration due to gravity

h :

Element edge length

i, j :

Indices

K :

Global structural stiffness matrix

K c :

Stiffness matrix of an element cut by the boundary

K E :

Stiffness matrix of a finite element

k :

Iteration number

L :

Total lift force

L c :

Lift force from built-in twist and camber

L α :

Lift force from unit angle of attack

N :

Load factor

n :

Unit normal vector

p :

Adjoint state vector

q :

Dynamic pressure

Q :

Aerodynamic stiffness matrix

S :

Force transfer matrix

T :

Displacement transfer matrix

t :

Fictitious time variable

u :

Displacement field or vector

V n :

Velocity function

v :

Virtual displacement

W b :

Wing box weight

W c :

Fixed aircraft weight

w :

Downwash dependent on deformed wing shape

w c :

Constant downwash from built-in camber

x :

Point in the design domain

z :

Column vector of 1’s

α :

Angle of attack

β c :

Volume of a cut element that lies inside the structure

β E :

Volume of an element

γ :

Small number

Γ:

Structural boundary

Γ D :

Part of boundary subject to displacement boundary conditions

Γ N :

Part of boundary subject to aerodynamic loads

Γ 0 :

Part of boundary free from boundary conditions and aerodynamic loads

Δt :

Time step

ε :

Strain tensor

θ :

Arbitrary vector (shape derivative auxiliary variable)

ρ :

Material density

ϕ :

Implicit function

Ω d :

Design domain

Ω:

Structural domain

References

  • Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, de Gournay F, Jouve F, Toader A (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80

    MATH  Google Scholar 

  • Appa K (1989) Finite-surface spline. J Aircr 26(5):495–496

    Article  Google Scholar 

  • Balabanov VO, Haftka RT (1996) Topology optimization of transport wing internal structure. J Aircr 33(1):232–233

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, Germany

    Book  Google Scholar 

  • Blair M (1992) A compilation of the mathematics leading to the doublet lattice method. Report No. WL-TR-92-3028, Wright-Patterson Air Force Base, Ohio

  • Brampton CJ, Kim HA, Cunningham JL (2012) Level set topology optimisation of aircraft wing considering aerostructural interaction. 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization, Indianapolis, IN USA, Sept

  • Cook R, Malkus D, Plesha M, Witt R (2002) Concepts and applications of finite element analysis, 4th edn. John Wiley & Sons, New York

    Google Scholar 

  • De Leon DM, de Souza CE, Fonseca JSO, da Silva RGA (2012) Aeroelastic tailoring using fiber orientation and topology optimization. Struct Multidiscip Optim 46(5):663–677

    Article  MATH  MathSciNet  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Dunning PD, Kim HA (2013) A new hole insertion method for level set based structural topology optimization. Int J Numer Methods Eng 93(1):118–134

    Article  MathSciNet  Google Scholar 

  • Dunning PD, Kim HA (2014) Introducing the sequential linear programming level-set method for topology optimization. Struct Multidiscip Optim (Accepted). doi:10.1007/s00158-014-1174-z

  • Dunning PD, Kim HA, Mullineux G (2011) Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization. Finite Elem Anal Des 47(8):933–941

    Article  Google Scholar 

  • Dunning PD, Brampton CJ, Kim HA (2013) Multidisciplinary level set topology optimization of the internal structure of an aircraft wing. 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida, USA, May 19–24

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Eves J, Toropov VV, Thompson HM, Gaskell PH, Doherty JJ, Harris JC. Topology Optimization of Aircraft with Non-Conventional Configurations, 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal, June 1–5, 2009

  • Gain AL, Paulino GH (2013) A critical comparative assessment of differential equation-driven methods for structural topology optimization. Struct Multidiscip Optim 48(4):685–710

    Article  MathSciNet  Google Scholar 

  • Gomes AA, Suleman A (2008) Topology optimization of a reinforced wing box for enhanced roll maneuvers. AIAA J 46(3):548–555

    Article  Google Scholar 

  • Grandy J (1997) Efficient computation of volume of hexahedral cells. Lawrence Livermore National Laboratory, UCRL-ID-128886. doi:10.2172/632793

  • James KA, Martins JRRA (2012) An isoparametric approach to level set topology optimization using a body-fitted finite element mesh. Comput Struct 90–91(1):97–106

    Article  Google Scholar 

  • James KA, Kennedy GJ, Martins JRRA (2014) Concurrent aerostructural topology optimization of a wing box. Comput Struct 134(1):1–17

    Article  Google Scholar 

  • Jang G-W, Kim YY, Choi KK (2004) Remesh-free shape optimization using the wavelet-Galerkin method. Int J Solids Struct 41(22–23):6465–6483

    Article  MATH  Google Scholar 

  • Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York

  • Krog L, Grihon S, Marasco A (2009) Smart design of structures through topology optimization. 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal, June 1–5

  • Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27(1):27–42

    Article  Google Scholar 

  • Min C, Gibou F (2007) Geometric integration over irregular domains with application to level-set methods. J Comput Phys 226(2):1432–1443

    Article  MATH  MathSciNet  Google Scholar 

  • Niu M (1988) Airframe structural design. Conmilit Press Ltd., Hong Kong

    Google Scholar 

  • Oktay E, Akay HU, Merttopcuoglu O (2011) Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures. Comput Fluids 49(1):141–145

    Article  MATH  MathSciNet  Google Scholar 

  • Oktay E, Akay HU, Sehitoglu OT (2014) Three-dimensional structural topology optimization of aerial vehicles under aerodynamic loads. Comput Fluids 92(1):225–232

    Article  MathSciNet  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, New York

    Book  MATH  Google Scholar 

  • Rodden WP, Taylor PF, McIntosh SC Jr (1998) Further refinement of the subsonic doublet-lattice method. J Aircr 35(5):720–727

    Article  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  • Sethian JA, Vladimirsky A (2000) Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc Natl Acad Sci U S A 97(11):5699–5703

    Article  MATH  MathSciNet  Google Scholar 

  • Stanford B, Beran P (2011) Optimal structural topology of a platelike wing for subsonic aeroelastic stability. J Aircr 48(4):1193–1203

    Article  Google Scholar 

  • Stanford B, Dunning PD (2014) Optimal topology of aircraft rib and spar structures under aeroelastic loads. J Aircr (Accepted). doi:10.2514/1.C032913

  • Stanford B, Ifju P (2009) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidiscip Optim 38(3):301–316

    Article  Google Scholar 

  • Taminger K, Hafley R (2003) Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process, Proceedings of the 3rd Annual Automotive Composites Conference, Troy, MI, September 9–10

  • van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Vassberg J, DeHaan M, Rivers S, Wahls R (2008) Development of a common research model for applied CFD validation studies. AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, August 10–13

  • Wakayama S, Kroo I (1995) Subsonic wing planform design using multidisciplinary optimization. J Aircr 32(4):746–753

    Article  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Computer Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  Google Scholar 

  • Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719

    Article  Google Scholar 

  • Xing X, Wei P, Wang MY (2010) A finite element-based level set method for structural optimization. Int J Numer Methods Eng 82(7):805–842

    MATH  MathSciNet  Google Scholar 

  • Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010) A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int J Numer Methods Eng 83(12):1580–1624

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is funded by the Fixed Wing project under the National Aeronautics and Space Administration’s (NASA) Fundamental Aeronautics Program. The authors would like to thank Dr. Maxwell Blair for his example DLM code and the Numerical Analysis Group at the Rutherford Appleton Laboratory for their FORTRAN HSL packages (HSL, a collection of Fortran codes for large-scale scientific computation. See http://www.hsl.rl.ac.uk/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Dunning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunning, P.D., Stanford, B.K. & Kim, H.A. Coupled aerostructural topology optimization using a level set method for 3D aircraft wings. Struct Multidisc Optim 51, 1113–1132 (2015). https://doi.org/10.1007/s00158-014-1200-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1200-1

Keywords

Navigation