Skip to main content
Log in

Optimal design of commercial vehicle systems using analytical target cascading

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents an industrial application of the analytical target cascading methodology to optimal design of commercial vehicle systems. The design problems concern the suspension of a heavy-duty truck and the body structure of a small bus. The results provide valuable insights in the feasibility of system-level design targets and the adequacy of subproblem design spaces during product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This is the case for both design examples and all levels presented in this paper.

  2. 2On an Intel i7 CPU 860@2.80GHz and 8.00GB RAM, one systemlevel function evaluation (i.e., Radioss simulation) takes 5 seconds on average, and the subproblem solution required 40 function evaluations on average; at the subsystem level, one Optistruct problem solution required 20 seconds on average. Consequently, one ATC iteration requires roughly 4 minutes.

  3. On an Intel i7 CPU 860@2.80GHz and 8.00GB RAM, one system-level function evaluation (i.e., Radioss simulation) takes 7 minutes on average, and the subproblem solution required 50 function evaluations on average; at the subsystem level one function evaluation takes 12 seconds on average, and each of the two subproblems required 800 function evaluations on average; at the component level, computational cost is negligible. Consequently, one ATC iteration requires roughly half a day.

References

  • Allison J, Walsh D, Kokkolaras M, Papalambros PY, Cartmell M (2006) Analytical target cascading in aircraft design. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno. AIAA- 2006-1325

  • Altair (2012) OptiStruct Version 11.0, Available at: http://www.altairhyperworks.com

  • Altair (2012) Radioss Version 11.0, Available at: http://www.altairhyperworks.com

  • Blouin VY, Samuels HB, Fadel GM, Haque IU, Wagner JR (2004) Continuously variable transmission design for optimum vehicle performance by analytical target cascading. Int J Heavy Veh Syst 11(3–4):327–348

    Article  Google Scholar 

  • Choudhary R, Malkawi A, Papalambros PY (2005) Analytic target cascading in simulation-based building design. Autom Constr 14(4):551–568

    Article  Google Scholar 

  • Han J, Papalambros PY (2010) A note on the convergence of analytical target cascading with infinite norms. ASME J Mech Des 132(3):034502 1–6

    Article  Google Scholar 

  • Kang N, Kokkolaras M, Papalambros PY (2013) Solving multiobjective optimization problem using quasi-separable MDO formulations and analytic target cascading. In: 10th World Congress on Structural and Multidisciplinary Optimization. Orlando

  • Kim HM(2001) Target cascading in optimal system design, Ph.D. Dissertation, Mechanical Engineering Dept., University of Michigan, Ann Arbor, MI

  • Kim HM, Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN (2002) Target cascading in vehicle redesign: a class VI truck study. Int J Veh Des 29(3):199–225

    Article  Google Scholar 

  • Kim HM,Michelena NF, Papalambros PY, Jiang T (2003a) Target cascading in optimal system design. ASME J Mech Des 125(3):474–480

    Article  Google Scholar 

  • Kim HM, Rideout DG, Papalambros PY, Stein JL (2003b) Analytical target cascading in automotive vehicle design. ASME J Mech Des 125:481–489

    Article  Google Scholar 

  • Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN (2004) Simulation-based optimal design of heavy trucks by model-based decomposition: an extensive analytical target cascading case study. Int J Heavy Veh Syst 11(3-4):403–433

    Article  Google Scholar 

  • Lassiter JB, Wiecek MM, Andrighetti KR (2005) Lagrangian coordination and analytical target cascading: solving ATC-decomposed problems with Lagrangian duality. Optim Eng 6(3):361381

    Article  MathSciNet  Google Scholar 

  • Li Z, Kokkolaras M, Papalambros P, Hu SJ (2008a) Product and process tolerance allocation in multi-station compliant assembly using analytical target cascading. ASME J Mech Des 130(9):091701 1–9

    Article  Google Scholar 

  • Li Y., Lu Z., Michalek J. J. (2008b) Diagonal quadratic approximation for parallelization of analytical target cascading. ASME J Mech Des 130(5):051402 111

    Article  Google Scholar 

  • MathWorks (2012) Matlab R2012a, Available at: http://www.mathworks.com

  • Michelena N, Park H, Papalambros PY (2003) Convergence properties of analytical target cascading. AIAA J 41(5):897–905

    Article  Google Scholar 

  • Tosserams S, Etman LFP, Papalambros PY, Rooda JE (2006) An augmented Lagrangian relaxation for analytical target cascading using the alternating directions method of multipliers. StructMultidiscip Optim 31(3):176–189

    Article  MATH  MathSciNet  Google Scholar 

  • Tosserams S, Kokkolaras M, Etman LFP, Rooda JE (2010) A nonhierarchical formulation of analytical target cascading. ASME J Mech Des 132:051002 1–12

    Article  Google Scholar 

  • Wang W, Blouin VY, Gardenghi MK, Fadel GM, Wiecek MM, Sloop BC (2013) Cutting plane methods for analytical target cascading with augmented Lagrangian coordination. ASME J Mech Desi 135(10):104502 1–6

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Hyundai Motor Company. Such support does not constitute an endorsement by the sponsor of the opinions expressed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kokkolaras.

Additional information

A previous version of this manuscript was presented at the 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (September 17-19, 2012, Indianapolis, Indiana).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, N., Kokkolaras, M., Papalambros, P.Y. et al. Optimal design of commercial vehicle systems using analytical target cascading. Struct Multidisc Optim 50, 1103–1114 (2014). https://doi.org/10.1007/s00158-014-1097-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1097-8

Keywords

Navigation