Skip to main content
Log in

Optimal design of interference fit assemblies subjected to fatigue loads

A sequential approximate multi-objective optimization approach

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a methodology for an optimal design of interference fit subjected to fatigue loads. Optimization consists in finding a trade-off between mass and competing safety factors at hub and shaft contact zone as well as in shaft fillet. Developing an effective calculation method for fatigue strength of an interference fitted assembly using the finite element method is one of the main steps of the procedure. Meanwhile, coupling the finite elements model of interference fit with an optimization algorithm is not adequate considering the computing time and the significant number of calculations necessary to portrait the assembly behavior. Therefore, a sequential approximate multi-objective optimization algorithm (SAMOO) is presented. The method involves Design Of Experiments (DOE), interpolation with kriging functions, and multi-objective optimization. Preliminary study of parameter variance, and advanced post-processing of multi-objective optimization, provide engineers with valuable information for identifying an optimal design of interference fit assembly using fewer finite element calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bonte M, Fourment L, Do T-T, Van den Boogaard A, Huetink J (2010) Optimization of forging processes using finite element simulations. Struct Multidisc Optim 42(25):797–810

    Article  Google Scholar 

  • Deb K, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Forsberg J, Nilsson L (2005) On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Struct Multidisc Optim 29(3):232–243

    Article  Google Scholar 

  • Jacobs JH, Etman LFP, van Keulen F, Rooda JE (2004) Framework for sequential approximate optimization. Struct Multidisc Optim 27(5):384–400

    Article  Google Scholar 

  • Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J Stat Plan Inference 26(2):131–148

    Article  MathSciNet  Google Scholar 

  • Juuma T (1999) Torsional fretting fatigue strength of a shrink-fitted shaft. Wear 231(2):310–318

    Article  Google Scholar 

  • Juuma T (2000) Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub. Tribol Int 33(8):537–543

    Article  Google Scholar 

  • Kim DW, Lee J (2010) An improvement of kriging based sequential approximate optimization method via extended use of design of experiments. Eng Optim 42(12):1133–1149

    Article  Google Scholar 

  • Kleijnen JPC (2005) An overview of the design and analysis of simulation experiments for sensitivity analysis. Eur J Oper Res 164(2):287–300

    Article  MATH  Google Scholar 

  • Kubota M, Kataoka S, Kondo Y (2009) Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape. Int J Fatigue 31(3):439–46

    Article  Google Scholar 

  • Lanoue F (2008) Modelisation et simulation des assemblages mecaniques par frettages sollicites en fatigue par la methode des elements finis, MASc

  • Lanoue F, Vadean A, Sanschagrin B (2009) Finite element analysis and contact modelling considerations of interference fits for fretting fatigue strength calculations. Simulation Modelling Practice and Theory 17(Compendex):1587–1602

    Article  Google Scholar 

  • Lanoue F, Vadean A, Sanschagrin B (2011) Fretting fatigue strength reduction factor for interference fits. Simulation Modelling Practice and Theory 19:1811–1823

    Article  Google Scholar 

  • Li G, Li M, Azarm S, Al Hashimi S, Al Ameri T, Al Qasa N (2009) Improving multi-objective genetic algorithms with adaptive design of experiments and online metamodelling. Struct Multidisc Optim 37(5):447–461

    Article  Google Scholar 

  • Li M, Li G, Azarm S (2008) A kriging metamodel assisted multiobjective genetic algorithm for design optimization. J Mech Des 130(3):031401

    Article  Google Scholar 

  • Lophaven S, Nielsen H, Sondergaard J (2002) Dace: a matlab kriging toolbox. Technical Report IMM-TR-2002-12

  • Madge JJ, Leen SB, McColl IR, Shipway PH (2007) Contact-evolution based prediction of fretting fatigue life: Effect of slip amplitude. Wear 262(9–10):1159–1170

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  • Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. J Stat Plan Inference 43(3):381–402

    Article  MathSciNet  MATH  Google Scholar 

  • Nishioka K, Komatsu H (1967) Researches on increasing the fatigue strength of press-fitted shaft assembly. Bull JSME 10(42):880–889

    Article  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MathSciNet  MATH  Google Scholar 

  • Schafer C, Finke E (2008) Shape optimisation by design of experiments and finite element methods-an application of steel wheels. Struct Multidisc Optim 36(5):477–491

    Article  Google Scholar 

  • van Beers WCM, Kleijnen JPC (2008) Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping. Eur J Oper Res 186(3):1099–1113

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank Altair Engineering Canada for the technical support in the integration of different software modules, and the NSERC (Natural Sciences and Engineering Research Council of Canada) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Biron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biron, G., Vadean, A. & Tudose, L. Optimal design of interference fit assemblies subjected to fatigue loads. Struct Multidisc Optim 47, 441–451 (2013). https://doi.org/10.1007/s00158-012-0836-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0836-y

Keywords

Navigation