Skip to main content

Advertisement

Log in

Multiobjective topology optimization of truss structures with kinematic stability repair

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper addresses single and multiobjective topology optimization of truss-like structures using genetic algorithms (GA’s). In order to improve the performance of the GA’s (despite the presence of binary topology variables) a novel approach based on kinematic stability repair (KSR) is proposed. The methodology consists of two parts, namely the creation of a number of kinematically stable individuals in the initial population (IP) and a chromosome repair procedure. The proposed method is developed for both 2D and 3D structures and is shown to produce (in the single-objective case) results which are better than, or equal to, those found in the literature, while significantly increasing the rate of convergence of the algorithm. In the multiobjective case, the proposed modifications produce superior results compared to the unmodified GA. Finally the algorithm is successfully applied to a cantilevered 3D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. DOF = dn − m − n s , where d is the dimension, n is the number of nodes, m the number of bar members and n s the number of degrees of freedom constrained by the supports. It should be verified that DOF is not positive.

  2. This does not include unconnected nodes.

  3. Note that the structures conform to the Chebyshev–Grübler–Kutzbach criterion.

  4. During collinear/planar repair, it is ensured that the number of elements removed does not lead to the node connected to one or two elements, respectively in 2D and 3D problems. This is to avoid connectivity violations, while technically satisfying the collinear/planar check.

  5. Note that the problem of singular topologies is eliminated through the presence of the topology variable.

  6. In the figures one of the two overlapping members is drawn below or above the other to avoid confusion. These members are connected to the nodes above or below them at the end points only.

References

  • Achtziger W, Stolpe M (2007) Truss topology optimization with discrete design variables’ guaranteed global optimality and benchmark examples. Struct Multidisc Optim 34:1–20

    Article  MathSciNet  Google Scholar 

  • Balling R, Briggs R, Gillman K (2006) Multiple optimum size/shape/topology designs for skeletal structures using a genetic algorithm. J Struct Eng 132:1158

    Article  Google Scholar 

  • Ben-Tal A, Jarre F, Kočvara M, Nemirovski A, Zowe J (2000) Optimal design of trusses under a nonconvex global buckling constraint. Optim Eng 1(2):189–213

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng FY, Li D (1997) Multiobjective optimization design with pareto genetic algorithm. J Struct Eng 123(9):1252–1261

    Article  Google Scholar 

  • Coello Coello C (1999a) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):129–156

    Google Scholar 

  • Coello Coello C (1999b) A survey of constraint handling techniques used with evolutionary algorithms. Laboratorio Nacional de Informatica Avanzada, Veracruz, Mexico, Technical report Lania-RI-99-04

  • Coello Coello C, Lamont G, Van Veldhuizen D (2002) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    MATH  Google Scholar 

  • Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465

    Article  MATH  Google Scholar 

  • Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J Méc 3:25–52

    Google Scholar 

  • Eldred MS, Adams BM, Haskell K, Bohnhoff WJ, Eddy JP, Gay DM, Griffin JD, Hart WE, Hough PD, Kolda TG, Martinez-Canales ML, Swiler LP, Watson JP, Williams PJ (2007) DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 4.1 reference manual. Tech. Rep. SAND2006-4055, Sandia National Laboratories, Albuquerque, New Mexico

  • Filomeno Coelho R, Bouillard P (2005) A multicriteria evolutionary algorithm for mechanical design optimization with expert rules. Int J Numer Methods Eng 62(4):516–536

    Article  MathSciNet  MATH  Google Scholar 

  • Filomeno Coelho R, Lebon J, Bouillard Ph (2010) Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion—application to the multiobjective reliability-based optimization of 3D truss structures. Struct Multidisc Optim 43(5):707–729

    Article  MathSciNet  Google Scholar 

  • Fonseca C, Fleming P et al (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms, vol 423, pp 416–423

  • Gil L, Andreu A (2001) Shape and cross-section optimisation of a truss structure. Comput Struct 79(7):681–689

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, XIII, 412 pp. DM 104.00

  • Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38:957–968

    Article  Google Scholar 

  • Hajela P, Lee E (1995) Genetic algorithms in truss topological optimization. Int J Solids Struct 32(22):3341–3357

    Article  MathSciNet  MATH  Google Scholar 

  • Hajela P, Lee E, Lin C (1993) Genetic algorithms in structural topology optimization. In: Bendsøe M, Soares C (eds) Topology design of structures. Kluwer Academic, Dordrecht, pp 117–134

    Chapter  Google Scholar 

  • Huang X, Zuo Z, Xie Y (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5–6):357–364

    Article  Google Scholar 

  • Jin P, De-yu W (2006) Topology optimization of truss structure with fundamental frequency and frequency domain dynamic response constraints. Acta Mech Solida Sinica 19(3):231–240

    Google Scholar 

  • Kaveh A, Kalatjari V (2003) Topology optimization of trusses using genetic algorithm, force method and graph theory. Int J Numer Methods Eng 58(5):771–791

    Article  MATH  Google Scholar 

  • Kawamura H, Ohmori H, Kito N (2002) Truss topology optimization by a modified genetic algorithm. Struct Multidisc Optim 23(6):467–473

    Article  Google Scholar 

  • Madeira J, Rodrigues H, Pina H (2006) Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing. Struct Multidisc Optim 32(1):31–39

    Article  Google Scholar 

  • Mathakari S, Gardoni P, Agarwal P, Raich A, Haukaas T (2007) Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms. Comput-Aided Civil Infrastruct Eng 22(4):282–292

    Article  Google Scholar 

  • Ohsaki M (1995) Genetic algorithm for topology optimization of trusses. Comput Struct 57(2):219–225

    Article  MathSciNet  MATH  Google Scholar 

  • Papadrakakis M, Lagaros N, Plevris V (2002) Multi-objective optimization of skeletal structures under static and seismic loading conditions. Eng Optim 34(6):645–669

    Article  Google Scholar 

  • Pedersen N (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20:2–11

    Article  Google Scholar 

  • Pellegrino S (1993) Structural computations with the singular value decomposition of the equilibrium matrix. Int J Solids Struct 30(21):3025–3035

    Article  MATH  Google Scholar 

  • Rozvany G (1996) Difficulties in truss topology optimization with stress, local buckling and system stability constraints. Struct Multidisc Optim 11(3):213–217

    Google Scholar 

  • Rozvany G (2001) On design-dependent constraints and singular topologies. Struct Multidisc Optim 21(2):164–172

    Article  Google Scholar 

  • Ruiyi S, Liangjin G, Zijie F (2009) Truss topology optimization using genetic algorithm with individual identification technique. In: Ao SI, Gelman L, Hukins DW, Hunter A, Korsunsky AM (eds) Proceedings of the world congress on engineering 2009 vol II WCE ’09, 1–3 July 2009, London, UK

  • Ruy W, Yang Y, Kim G, Yeun Y (2001) Topology design of truss structures in a multicriteria environment. Comput-Aided Civil Infrastruct Eng 16(4):246–258

    Article  Google Scholar 

  • Schaffer J (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st international conference on genetic algorithms, pp 93–100

  • Šešok D, Belevicius R (2008) Global optimization of trusses with a modified genetic algorithm. J Civ Eng Manag 14(3):147–154

    Article  Google Scholar 

  • Statnikov R, Bordetsky A, Matusov J, Sobol I, Statnikov A (2009) Definition of the feasible solution set in multicriteria optimization problems with continuous, discrete, and mixed design variables. Nonlinear Anal: Theory Methods Appl 71(12):e109–e117

    Article  MATH  Google Scholar 

  • Su R, Wang X, Gui L, Fan Z (2011) Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy. Struct Multidisc Optim 43(2):275–286

    Article  Google Scholar 

  • Taylor RL (2008) FEAP—a finite element analysis program. Version 8.2 user manual

  • Tong WH, Liu GR (2001) An optimization procedure for truss structures with discrete design variables and dynamic constraints. Comput Struct 79(2):155–162

    Article  Google Scholar 

  • Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073

    Article  MATH  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca C, Da Fonseca V (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Acknowledgement

The first author would like to thank the Fonds de la Recherche Scientifique (FNRS) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, J.N., Adriaenssens, S., Bouillard, P. et al. Multiobjective topology optimization of truss structures with kinematic stability repair. Struct Multidisc Optim 46, 513–532 (2012). https://doi.org/10.1007/s00158-012-0777-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0777-5

Keywords

Navigation