Skip to main content
Log in

Connections between topological sensitivity analysis and material interpolation schemes in topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Material interpolation schemes, like SIMP, are very popular in topology optimization. They convert the difficult 0-1 problem into a nonlinear programming problem defined over a convex set by involving an interpolation (or penalization) function, usually constructed in rather empirical ways. This paper gives an insight into such methods with the help of the notion of topological sensitivity, and in particular provides some arguments for the choice of the penalization function. A simple algorithm based on these concepts is proposed and illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allaire G (2002) Shape optimization by the homogenization method. In: Applied mathematical sciences, vol 146. Springer, New York

    Google Scholar 

  • Allaire G (2007) Conception optimale de structures. In: Mathématiques & applications (Berlin), vol 58. Springer, Berlin (with the collaboration of Marc Schoenauer (INRIA) in the writing of Chapter 8)

    Google Scholar 

  • Allaire G, de Gournay F, Jouve F, Toader A-M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34:59–80

    MATH  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Ammari H, Kang H (2007) Polarization and moment tensors. In: Applied mathematical sciences, vol 162. Springer, New York (with applications to inverse problems and effective medium theory)

    Google Scholar 

  • Amstutz S (2006a) Sensitivity analysis with respect to a local perturbation of the material property. Asympt Anal 49(1–2):87–108

    MathSciNet  MATH  Google Scholar 

  • Amstutz S (2006b) Topological sensitivity analysis for some nonlinear PDE system. J Math Pures Appl (9) 85(4):540–557

    Google Scholar 

  • Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Theory, methods and applications. In: Topology optimization. Springer, Berlin

    Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1): 344–362

    Article  MathSciNet  MATH  Google Scholar 

  • Dieudonné J (1969) Foundations of modern analysis. Academic, New York (enlarged and corrected printing: Pure Appl Math 10-I)

    MATH  Google Scholar 

  • Eschenauer H, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Garreau S, Guillaume P, Masmoudi M (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J Control Optim 39(6):1756–1778 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Guzina BB, Bonnet M (2004) Topological derivative for the inverse scattering of elastic waves. Q J Mech Appl Math 57(2):161–179

    Article  MathSciNet  MATH  Google Scholar 

  • Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. In: Mathematical modelling: theory and applications, vol 23. Springer, New York

    Google Scholar 

  • Murat F, Simon J (1974) Quelques résultats sur le contrôle par un domaine géométrique. Publ. Laboratoire d’Analyse Numérique, Université Paris 6, pp 1–46

  • Nazarov SA, Sokołowski J (2003) Asymptotic analysis of shape functionals. J Math Pures Appl (9) 82(2):125–196

    Google Scholar 

  • Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192(7–8):803–829

    Article  MATH  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. In: Applied mathematical sciences, vol 153. Springer, New York

    Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Rietz A (2001) Sufficiency of finite exponent in simp (power law) methods. Struct Multidisc Optim 21:159–163

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidisc Optim 21:120–127

    Article  Google Scholar 

  • Sokołowski J, Żochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Sokołowski J, Zolésio J-P (1992) Shape sensitivity analysis. In: Introduction to shape optimization. Springer series in computational mathematics, vol 16. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Amstutz.

Appendix A: Mathematical complements

Appendix A: Mathematical complements

The goal of this appendix is to prove Theorem 4.2. We begin by two preliminary lemmas.

Lemma A.1

Let \(\mathcal{S}\) be the set of polarization matrices generated by arbitrary ellipses, i.e,

$$ \mathcal{S}=\left\{R Q_{r,e} R^T, R \in \mathcal{U}, 0<e \leq 1\right\}. $$

Then\(\mathcal{S}\) is the set of all 2 × 2 symmetric positive definite matrices P verifying

$$ \label{trace} \mbox{trace} \ (P^{-1}) = 1+r , \qquad \mbox{trace} \ (P) < 1+\frac{1}{r}. $$
(26)

Proof

If \(P \in \mathcal{S}\), one easily checks (26). Suppose that P satisfies (26) and denote by λ 1,λ 2 the eigenvalues of P, which satisfy

$$ \label{lambda} \frac{1}{\lambda_1} + \frac{1}{\lambda_2} = 1+r, \qquad \lambda_1+\lambda_2 < 1+\frac{1}{r}. $$
(27)

We deduce from (27) that

$$ \lambda_1>\frac{1}{1+r}, $$
$$ \lambda_1+\lambda_2-\left(1+\frac{1}{r}\right)=\left(1+\frac{1}{r}\right)\frac{(1-r\lambda_1)(1-\lambda_1)}{(1+r)\lambda_1-1}<0, $$

which entails

$$ (1-\lambda_1)(r\lambda_1-1)>0. $$

Hence \(\hat{e}:=(1-\lambda_1)/(r\lambda_1-1)>0\). If \(\hat{e}\leq 1\), we set \(e=\hat{e}\), so that λ 1 = (1 + e)/(1 + re) and, using (27), λ 2 = (1 + e)/(e + r). If \(\hat{e}>1\), we set \(e=1/\hat{e}\), so that λ 1 = (1 + e)/(e + r) and, using (27), λ 2 = (1 + e)/(1 + re). In both cases P has the same eigenvalues as Q r,e, thus there exists \(R \in \mathcal{U}\) such that \(P=RQ_{r,e}R^T\). □

Lemma A.2

The closure of \(\mathcal{S}\) is the set of all symmetric positive definite matrices P verifying

$$ \label{tracecl} \mbox{trace} \ (P^{-1}) = 1+r , \qquad \mbox{trace} \ (P) \leq 1+\frac{1}{r}. $$
(28)

Proof

Clearly, (28) is fulfilled by all P belonging to the closure of \(\mathcal{S}\), denoted by \(\mbox{cl} (\mathcal{S})\). In addition, every eigenvalue λ of a matrix \(P \in \mathcal{S}\) satisfies λ ≥ 1/(1 + r). Hence each \(P \in \mbox{cl} (\mathcal{S})\) is symmetric positive definite. Suppose now that P is a symmetric positive definite matrix verifying

$$ \label{tracebo} \mbox{trace} \ (P^{-1}) = 1+r , \qquad \mbox{trace} \ (P) = 1+\frac{1}{r}. $$
(29)

Using (29) we obtain that the eigenvalues of P are 1 and 1/r. Therefore there exists \(R \in \mathcal{U}\) such that

$$ P=R \begin{pmatrix} 1 & 0 \\ 0 & 1/r \end{pmatrix} R^T. $$

Let (α n ) be a sequence of positive numbers such that

$$ \alpha_n > \frac{1}{1+r} \qquad \forall n \in \mathbb N, \qquad \lim_{n \to \infty} \alpha_n \to 1, $$

and define

$$ \beta_n = \frac{\alpha_n}{\alpha_n(1+r)-1}>0, $$
$$ P_n=R \begin{pmatrix} \alpha_n & 0 \\ 0 & \beta_n \end{pmatrix} R^T. $$

By construction, we have for all n

$$ \frac{1}{\alpha_n}+\frac{1}{\beta_n}=1+r, $$
$$ a_n:=\alpha_n+\beta_n-\left(1+\frac{1}{r}\right) = \left(1+\frac{1}{r}\right) \frac{(1-\alpha_n)(1-r\alpha_n)}{\alpha_n(1+r)-1}. $$

We choose (α n ) such that

$$ \begin{array}{lll} \alpha_n < 1 \quad \mbox{if} \quad r>1, \\ \alpha_n > 1 \quad \mbox{if} \quad r<1. \end{array} $$

In each case, for n large enough, a n  < 0, hence \(P_n \in \mathcal{S}\). As limn → ∞  P n  = P, we conclude that \(P \in \mbox{cl} (\mathcal{S})\). □

We are now in position to prove Theorem 4.2. First, we easily check that, in the nontrivial case where U,V ≠ 0, Λ  +  and Λ − given by (20) are eigenvalues of M associated with the eigenvectors U/|U| + V/|V| and U/|U| − V/|V|, respectively. Suppose that \(\gamma \in \mathcal{E}\) is a local minimizer of j with respect to every elliptic inclusion, and choose \(x \in D_\gamma^-\). According to Lemma 2.3, we have g γ,ω(x) ≥ 0 for any ellipse ω. Then the condition (22)(a) will be fulfilled if we set

$$ g_\gamma^\star(x) = \inf \{g_{\gamma,\omega}(x), \omega \ \mbox{ellipse} \}. $$

We now check that the above infimum satisfies (21)(a). For each ellipse ω, we write (18) in the form

$$ g_{\gamma,\omega}(x) = P_{\omega,r}:M(x)+\ell. $$

With the notation of Lemma A.1, we have

$$ g_\gamma^\star(x) = \inf \{P:M+\ell, P \in \mathcal{S}\}. $$

As \(\mathcal{S}\) is bounded, we also have

$$ g_\gamma^\star(x) = \min \{P:M+\ell, P \in \mbox{cl}(\mathcal{S})\}. $$

Let us consider an arbitrary \(P \in \mbox{cl}(\mathcal{S})\), which we write in the form

$$ \begin{array}{lll} P=R\hat{P}R^T, \quad \hat{P}=\begin{pmatrix} \lambda^+ & 0 \\ 0 & \lambda^- \end{pmatrix}, \\ R \in \mathcal{U}, \quad \lambda^+ \geq \lambda^->0. \end{array} $$

Likewise, there exists \(S \in \mathcal{U}\) such that

$$ M=S\hat{M}S^T, \qquad \hat{M}=\begin{pmatrix} \Lambda^+ & 0 \\ 0 & \Lambda^- \end{pmatrix}. $$

Set T = S T R. As \(T \in \mathcal{U}\), there exists φ ∈ ℝ such that

$$ T=\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \ \mbox{or} \ T=\begin{pmatrix} \cos\phi & \sin\phi \\ \sin\phi & -\cos\phi \end{pmatrix}. $$

We arrive in both cases at

$$ \begin{array}{rll} P:M &=& \left(T\hat{P}T^T\right):\hat{M} = \left(\lambda^+-\lambda^-\right)\left(\Lambda^+-\Lambda^-\right)\\ &&\times\,\cos^2\phi+\Lambda^+\lambda^-+\Lambda^-\lambda^+. \end{array}$$
(30)

Arguing as in Lemma A.1 with the characterization of \(\mbox{cl}(\mathcal{S})\) given by Lemma A.2, we obtain that

$$ \left(1-\lambda^\pm\right)\left(r\lambda^\pm-1\right) \geq 0. $$

Since \(x \in D_\gamma^-\), we have r = γ  + /γ − > 1, hence the above inequality implies that 1/r ≤ λ − ≤ λ  +  ≤ 1. Using that Λ − ≤ 0 ≤ Λ  +  we derive

$$ P:M \geq \frac{\Lambda^+}{r} + \Lambda^-. $$

In addition, this bound is attained for cosφ = 0, λ  +  = 1, λ − = 1/r, which provides (21)(a). The case where \(x \in D_\gamma^+\) can be treated in a similar way, with \(\inf\) replaced by sup and r = γ − /γ  +  < 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amstutz, S. Connections between topological sensitivity analysis and material interpolation schemes in topology optimization. Struct Multidisc Optim 43, 755–765 (2011). https://doi.org/10.1007/s00158-010-0607-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0607-6

Keywords

Navigation