Skip to main content
Log in

Topology optimization for designing strain-gauge load cells

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allaire G (2001) Shape Optimization by the Homogenization method. Springer, New York

    Google Scholar 

  • Bayo E, Stubbe JR (1989) Six-axis force sensor evaluation and a new type of optimal frame truss design for robotic applications. J Robot Syst 6(2):191–208

    Article  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  • Canfield S, Frecker M (2000) Topology optimization of compliant mechanical amplifiers for piezoelectric actuators. Struct Multidisc Optim 20(4):269–279

    Article  Google Scholar 

  • Chao LP, Chen KT (1997) Shape optimal design and force sensitivity evaluation of six-axis force sensors. Sens Actuator Phys 63(2):105–112

    Article  MathSciNet  Google Scholar 

  • Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45

    Article  Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  Google Scholar 

  • Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic, Orlando

    MATH  Google Scholar 

  • Kaneko M (1996) Twin-head six-axis force sensors. IEEE Trans Robot Autom 12(1):146–154

    Article  Google Scholar 

  • Kim GS, Lee HD (2003) Development of a six-axis force/moment sensor and its control system for an intelligent robot’s gripper. Meas Sci Technol 14:1265–1274

    Article  Google Scholar 

  • Kim JA, Bae EW, Kim SH, Kwak YK (2002) Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets. Precis Eng 26:99–104

    Article  Google Scholar 

  • Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4–5):535–563

    Article  MATH  Google Scholar 

  • Liu SA, Tzo HL (2002) A novel six-component force sensor of good measurement isotropy and sensitivities. Sens Actuator Phys 100(2–3):223–230

    Article  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59:1925–1944

    Article  MathSciNet  MATH  Google Scholar 

  • Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Eng 42:535–559

    Article  MathSciNet  MATH  Google Scholar 

  • Park JJ, Kim GS (2005) Development of the 6-axis force/moment sensor for an intelligent robot’s gripper. Sens Actuator Phys 118(1):127–134

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20(1):2–11

    Article  Google Scholar 

  • Pedersen CBW (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193(6–8):653–678

    Article  MATH  Google Scholar 

  • Rubio WM, Silva ECN, Nishiwaki S (2008) Piezoresistive sensor design using topology optimization. Struct Multidisc Optim 36(6):571–583

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2001) Design of multiphysics actuators using topology optimization–part i: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604

    Article  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4):401–424

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Silva ECN, Nishiwaki S, Kikuchi N (2000) Topology optimization design of flextensional actuators. IEEE Trans Ultrason Ferroelectr Freq Control 47(3):657–671

    Article  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Uchiyama M, Bayo E, Palma-Villalon E (1991a) A systematic design procedure to minimize a performance index for robot force sensors. J Dyn Syst Meas Control 113:388–394

    Article  Google Scholar 

  • Uchiyama M, Nakamura Y, Hakomori K (1991b) Evaluation of the robot force sensor structure using singular value decomposition. Adv. Robot 5(1):39–52

    Article  Google Scholar 

  • Weiblen W, Hofmann T (1998) Evaluation of different designs of wheel force transducers. SAE Paper (980262):1–10

  • Zhou M, Rozvany GIN (1991) The coc algorithm. II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the JGC-S scholarship foundation, the MAZAK foundation and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazilian National Council for Scientific and Technological Development). We are deeply grateful to Prof. Svanberg for providing the source code for the Method of Moving Asymptotes (MMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Takezawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takezawa, A., Nishiwaki, S., Kitamura, M. et al. Topology optimization for designing strain-gauge load cells. Struct Multidisc Optim 42, 387–402 (2010). https://doi.org/10.1007/s00158-010-0491-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0491-0

Keywords

Navigation